





# Durability of photovoltaics modules: modeling, simulation and experiments



Marco Paggi IMT School for Advanced Studies Lucca

> Politecnico di Milano March 9, 2017



- M. Paggi, Associate Professor
- A. Bacigalupo, Assistant Professor
- C. Borri, Post-doc
- P. Budarapu, Post-doc
- M. Gagliardi, Post-doc
- F. Fantoni, Post-doc
- I. Berardone, Post-doc
- O.S. Ojo, Post-doc
- P. Lenarda, Post-doc
- V. Carollo, PhD student (30th cycle)
- P. Cinat, PhD student (30th cycle)
- V. Govindarajan, PhD student (30th cycle)
- R. Del Toro, PhD student (31st cycle)
- N. Dardano, PhD student (32nd cycle)
- T. Guillen Hernandez, PhD student (32nd cycle)

#### Visiting professors

- D. Bigoni, Full Professor, University of Trento, ERC AdG, Italy
- J. Reinoso, Assistant Professor, University of Seville, Spain
- M. Corrado, Assistant Professor, PoliTO & Marie Curie Fellow at EPFL
- A. Gizzi, Assistant Professor, Università Campus Bio-Medico of Rome

### **MUSAM Research unit**





# Introduction, motivation, aims



Established by the European Commi



**Photovoltaics (PV)** 







Glass EVA Solar cells EVA Tedlar Aluminum Tedlar







Established by the European Commission

## Applications: from PV parks to BIPV









![](_page_5_Picture_0.jpeg)

## Durability

#### Some failure modes of PV modules:

- 1. Cracks
- 2. Decohesion of the encapsulant
- 3. Moisture-induced degradation

![](_page_5_Picture_6.jpeg)

![](_page_5_Picture_7.jpeg)

![](_page_5_Picture_8.jpeg)

# Multi-physics modelling & simulation

![](_page_6_Picture_1.jpeg)

![](_page_6_Figure_2.jpeg)

![](_page_7_Figure_0.jpeg)

![](_page_8_Picture_0.jpeg)

# **Experimental tests**

![](_page_9_Picture_0.jpeg)

![](_page_9_Picture_1.jpeg)

![](_page_9_Figure_2.jpeg)

![](_page_9_Picture_3.jpeg)

Corrado, Infuso, Paggi (2016) Simulated hail impact tests on photovoltaic laminates, Meccanica.

![](_page_10_Picture_0.jpeg)

![](_page_10_Picture_1.jpeg)

Established by the European Commission

## Substrate stiffness

![](_page_10_Picture_4.jpeg)

![](_page_10_Picture_5.jpeg)

(b)

Hard

Medium

(c) Soft 6

3

### Substrate stiffness

![](_page_11_Picture_1.jpeg)

![](_page_11_Figure_2.jpeg)

![](_page_12_Picture_0.jpeg)

![](_page_12_Picture_1.jpeg)

# **Crack patterns**

![](_page_12_Picture_3.jpeg)

Alveolar PC + Wooden board

Polystirene + Wooden board

![](_page_12_Picture_7.jpeg)

Case A: Hard substrate

![](_page_12_Picture_9.jpeg)

![](_page_12_Picture_10.jpeg)

![](_page_12_Picture_11.jpeg)

Case C: Soft substrate

r\*=7.5 mm

r\*=15.8 mm

r\*=31.0 mm

![](_page_13_Picture_0.jpeg)

## **Finite element models**

![](_page_13_Figure_2.jpeg)

- Approach 1 (simplified): quasi-static FE contact simulation & SDOF model
- Approach 2 (the most accurate): dynamic fully implicit FE contact simulation

## **Dynamic response**

![](_page_14_Figure_1.jpeg)

![](_page_14_Figure_2.jpeg)

--- Approach 1 (simplified)

Approach 2 (the most accurate)

![](_page_15_Figure_0.jpeg)

![](_page_16_Picture_0.jpeg)

## Size of the crack pattern

![](_page_16_Figure_2.jpeg)

![](_page_17_Picture_0.jpeg)

# Influence of cracks and deformation on the electric field

![](_page_18_Picture_0.jpeg)

Paggi M, Berardone I, Infuso A, Corrado M (2014) Fatigue degradation and electric recovery in Silicon solar cells embedded in photovoltaic modules. **Sci. Rep.,** 4:4506.

![](_page_19_Figure_0.jpeg)

Paggi M, Berardone I, Infuso A, Corrado M (2014) Fatigue degradation and electric recovery in Silicon solar cells embedded in photovoltaic modules. Sci Rep 4:4506.

![](_page_20_Picture_0.jpeg)

Established by the European Co

![](_page_20_Picture_1.jpeg)

## Results

![](_page_20_Picture_3.jpeg)

Initial flat configuration

Max deflection

Final flat configuration

- Some electrically inactive areas conduct again after unloading (crack closure & contact)
- The amount of electrically inactive areas increases after the loading cycle (fatigue effects)

![](_page_21_Picture_0.jpeg)

# Aging of PV modules containing cracked solar cells

# **Accelerated degradation:** damp-heat test

![](_page_22_Picture_1.jpeg)

![](_page_22_Picture_2.jpeg)

![](_page_22_Picture_3.jpeg)

(a) 0 cycles

![](_page_22_Figure_5.jpeg)

(b) 80 cycles

![](_page_22_Picture_7.jpeg)

(d) 200 cycles

![](_page_22_Picture_9.jpeg)

![](_page_22_Figure_10.jpeg)

![](_page_22_Picture_11.jpeg)

(c) 160 cycles

![](_page_22_Picture_12.jpeg)

(e) 240 cycles

(f) 320 cycles

(g) 400 cycles

(h) 500 cycles

![](_page_23_Picture_0.jpeg)

# **Computational models**

### **Global/local FE approach**

![](_page_24_Picture_1.jpeg)

![](_page_24_Figure_2.jpeg)

Paggi M, Berardone I, Corrado M (2016) A global/local approach for the prediction of the electric response of cracked solar cells in photovoltaic modules under the action of mechanical loads. **EFM**, doi:10.1016/j.engfracmech.2016.01.018

#### **Electric model**

![](_page_25_Picture_1.jpeg)

![](_page_25_Figure_2.jpeg)

Berardone I, Corrado M, Paggi M (2014) A generalized electric model for mono and polycrystalline silicon in the presence of cracks and random defects. **Energy Procedia** 55:22-29.

Paggi M, Berardone I, Corrado M (2016) A global/local approach for the prediction of the electric response of cracked solar cells in photovoltaic modules under the action of mechanical loads. **Engineering Fracture Mechanics**, doi:10.1016/j.engfracmech.2016.01.018

![](_page_26_Figure_0.jpeg)

### **Electric model**

![](_page_26_Figure_2.jpeg)

![](_page_27_Picture_0.jpeg)

#### Phase field modeling of fracture in shells

- Solid shell finite element
- Monolithic and implicit formulation
- Phase field interpolation through the shell thickness
- ANS + EAS technologies (for Poisson thickness and volumetric locking pathologies)
- Linear elastic and nonlinear
   elastic constitutive relations
- FEAP & Abaqus implementation

![](_page_27_Figure_8.jpeg)

J. Reinoso, M. Paggi, C. Linder (2017) Phase field modeling of brittle fracture for enhanced assumed strain shells at large deformations: formulation and finite element Implementation, Computational Mechanics, DOI 10.1007/s00466-017-1386-3

![](_page_28_Picture_0.jpeg)

#### Phase field modeling of fracture in shells

![](_page_28_Figure_2.jpeg)

J. Reinoso, M. Paggi, C. Linder (2017) Phase field modeling of brittle fracture for enhanced assumed strain shells at large deformations: formulation and finite element Implementation, Computational Mechanics, DOI 10.1007/s00466-017-1386-3

#### Phase field modeling of fracture in shells

![](_page_29_Picture_1.jpeg)

![](_page_29_Figure_2.jpeg)

J. Reinoso, M. Paggi, C. Linder (2017) Phase field modeling of brittle fracture for enhanced assumed strain shells at large deformations: formulation and finite element Implementation, Computational Mechanics, DOI 10.1007/s00466-017-1386-3

![](_page_30_Picture_0.jpeg)

# Moisture diffusion and chemical reactions take place inside the EVA layers

![](_page_30_Picture_3.jpeg)

![](_page_30_Picture_4.jpeg)

Predicted moisture concentration

![](_page_30_Picture_6.jpeg)

P. Lenarda, M. Paggi (2016) A geometrical multi-scale numerical method for coupled hygrothermo-mechanical problems in photovoltaic laminates. **Computational Mechanics**.

![](_page_31_Picture_0.jpeg)

#### The role of chemistry

![](_page_31_Figure_2.jpeg)

![](_page_31_Figure_3.jpeg)

Moisture sorption + gas formation + overheating

![](_page_31_Figure_5.jpeg)

![](_page_32_Picture_1.jpeg)

![](_page_32_Figure_2.jpeg)

Primary reactions: deprotonation, oxidation, deacetylation

![](_page_33_Picture_0.jpeg)

#### Secondary following reactions: polymer chain cleavage

![](_page_33_Figure_3.jpeg)

- Polymeric (unsaturations, carbonyl bonds)
  - Small molecules (water, acetic acid)

![](_page_33_Figure_6.jpeg)

![](_page_34_Picture_0.jpeg)

#### **Reaction-diffusion PDEs**

$$\frac{\mathrm{d}[\mathrm{H}^{\bullet}]}{\mathrm{d}t} - \Delta(D_{H^{\bullet}}[\mathrm{H}^{\bullet}]) = k_{1}[\mathrm{ET}]$$

$$\frac{\mathrm{d}[\mathrm{H}_{2}]}{\mathrm{d}t} - \Delta(D_{H_{2}}[\mathrm{H}_{2}]) = k_{2}[\mathrm{R}^{\bullet}]$$

$$\frac{\mathrm{d}[\mathrm{O}_{2}]}{\mathrm{d}t} - \Delta(D_{O_{2}}[\mathrm{O}_{2}]) = -k_{3}[\mathrm{R}^{\bullet}][\mathrm{O}_{2}]$$

$$\frac{\mathrm{d}[\mathrm{H}_{2}\mathrm{O}]}{\mathrm{d}t} - \Delta(D_{H_{2}O}[\mathrm{H}_{2}\mathrm{O}]) = k_{3}[\mathrm{R}^{\bullet}][\mathrm{O}_{2}]$$

$$\frac{\mathrm{d}[\mathrm{CH}_{3}\mathrm{CHO}]}{\mathrm{d}t} - \Delta(D_{CH_{3}CHO}[\mathrm{CH}_{3}\mathrm{CHO}]) = k_{4}[\mathrm{VAc}]$$

$$\frac{\mathrm{d}[\mathrm{CH}_{3}\mathrm{COOH}]}{\mathrm{d}t} - \Delta(D_{CH_{3}COOH}[\mathrm{CH}_{3}\mathrm{COOH}]) = k_{5}[\mathrm{VAc}]$$

+ Fourier heat transfer PDE (for accelerated aging)

#### **Reaction kinetics ODEs**

$$\begin{aligned} \frac{\mathrm{d}[\mathrm{ET}]}{\mathrm{d}t} &= -k_1[\mathrm{ET}] \\ \frac{\mathrm{d}[\mathrm{R}^{\bullet}]}{\mathrm{d}t} &= k_1[\mathrm{ET}] \\ \frac{\mathrm{d}[\mathrm{U}]}{\mathrm{d}t} &= k_2[\mathrm{R}^{\bullet}] + k_5[\mathrm{VAc}] \\ \frac{\mathrm{d}[\mathrm{C}_\mathrm{b}]}{\mathrm{d}t} &= k_3[\mathrm{R}^{\bullet}][\mathrm{O}_2] + k_4[\mathrm{VAc}] - (k_6 + k_7)[\mathrm{C}_\mathrm{b}] \\ \frac{\mathrm{d}[\mathrm{VAc}]}{\mathrm{d}t} &= -(k_4 + k_5)[\mathrm{VAc}] \\ \frac{\mathrm{d}[\mathrm{VAc}]}{\mathrm{d}t} &= -(k_4 + k_5)[\mathrm{VAc}] \\ \frac{\mathrm{d}[\mathrm{C}_\mathrm{b}^{\bullet}]}{\mathrm{d}t} &= k_6[\mathrm{C}_\mathrm{b}] \\ \frac{\mathrm{d}[\mathrm{R}_\mathrm{t}^{\bullet}]}{\mathrm{d}t} &= k_6[\mathrm{C}_\mathrm{b}] \\ \frac{\mathrm{d}[\mathrm{C}_\mathrm{b}\mathrm{t}]}{\mathrm{d}t} &= k_7[\mathrm{C}_\mathrm{b}] \\ \frac{\mathrm{d}[\mathrm{U}_\mathrm{t}]}{\mathrm{d}t} &= k_7[\mathrm{C}_\mathrm{b}] \end{aligned}$$

![](_page_35_Picture_0.jpeg)

#### Accelerated aging (damp-heat test)

![](_page_35_Figure_3.jpeg)

#### Environmental degradation (climatic data from Piacenza)

![](_page_35_Figure_5.jpeg)

![](_page_35_Figure_6.jpeg)

![](_page_36_Picture_0.jpeg)

#### Integration algorithm:

$$\rho c \frac{T^{n+1} - T^n}{\Delta t} - \kappa \nabla^2 T^{n+1} = Q_T$$

$$\frac{\mathbf{C}^{n+1} - \mathbf{C}^n}{\Delta t} + \mathbf{div}(\mathbf{D}(\mathbf{C}^{n+1})\nabla\mathbf{C}^{n+1}) = \mathbf{F}$$

Input: kinetic and diffusion parameters:

 $k_i^0, E_i, \Delta H_i, D_j^0, E_j^d, \kappa, \rho, c;$  **Initialize:**  $\{C\}^1, T^1$ tol, norm = 1 **Given**  $\{C\}^n, T^n$ 

for n = 1, ..., N time steps do

Compute  $k_i(T^n)$ ,  $Q_T(T^n)$ ; Solve the thermal problem:

 $\rho c \partial_t T^{n+1} - \kappa \nabla^2 T^{n+1} = Q_T;$ 

Update temperature:  $T^{n+1} \leftarrow T^n$ ; Update kinetic constants and diffusion coefficients:  $k_i(T^{n+1}), D_j(T^{n+1})$ ; while (norm  $\geq$  tol) do

Update reaction vector and diffusion matrix  $\mathbf{F}_{(k)}^{n+1}$ ,  $\mathbf{D}_{(k)}^{n+1}$ ;

Form the residual vector:  $\{R\}_{(k)}^{n+1}$ ;

Solve the linearized reaction – diffusion system:  $\{C\}_{(k)}^{n+1} \leftarrow \{C\}_{(k)}^{n+1}$ 

end

Update the concentration vector:

 $\{C\}^{n+1} \leftarrow \{C\}^n;$ 

end

![](_page_37_Figure_1.jpeg)

erc

European Research Counci stablished by the European Commission IDEAS

\_\_\_\_\_

M. Gagliardi, P. Lenarda, M. Paggi (2017) A reaction-diffusion formulation to simulate EVA polymer degradation in environmental and accelerated ageing conditions, Solar Energy Materials and Solar Cells, 164:93–106.

![](_page_38_Picture_0.jpeg)

### Acknowledgements

#### Multi-field and multi-scale Computational Approach to design and durability of Photovoltaic Modules – CA2PVM

![](_page_38_Picture_3.jpeg)

![](_page_38_Picture_4.jpeg)

![](_page_38_Picture_5.jpeg)

http://musam.imtlucca.it/CA2PVM.html

### Mid-term scientific report:

http://musam.imtlucca.it/Mid-term-report.pdf

#### **MUSAM Annual Reports:**

http://musam.imtlucca.it/Report\_2014.pdf http://musam.imtlucca.it/Report\_2015.pdf