

Phase field approach to brittle fracture and cohesive zone models for fracture mechanics in heterogeneous materials and composites

Marco Paggi IMT School for Advanced Studies Lucca

University of Portsmouth, UK January 17, 2018

One of the 6 Italian public schools for advanced studies:

- 15 permanent faculty members + 3 tenure-track assistant professors
- 36 PhD students per year
- One interdisciplinary PhD programme in Systems Science (mechanics, optimization and control, computer science)

IMT (Institutions, Markets, Technologies) in a nutshell

7 Research units: DYSCO, MUSAM, SYSMA, AXES, LYNX, NETWORKS, MOMILAB

- M. Paggi, Full Professor
- A. Bacigalupo, Assistant Professor

Post-docs

- C. Borri
- M. Gagliardi
- F. Biancalani

PhD students

- V. Carollo
- P. Cinat
- V. Govindarajan
- R. Del Toro
- N. Dardano
- T. Guillen Hernandez
- M. Marulli
- J. Bonari

Multi-scale Analysis of Materials MUSAM Research unit

Former staff

- **P. Budarapu** (tenure-track assistant prof., Indian Institute of Technology, Bhubaneswar)
- **O.S. Ojo** (post-doc, University of Limerick, Ireland)
- L. Morini (post-doc, University of Cardiff, UK)
- P. Lenarda (post-doc, IIT Genova)
- F. Fantoni (post-doc, University of Brescia)
- I. Berardone (post-doc, University of Bologna)

MUSAM-Lab

http://www.imtlucca.it/research/laboratories/musam-lab

- 3D confocal-interferometric profilometer (LEICA, DCM 3D)
- Scanning Electron Microscope (ZEISS, EVO MA15)
- Micromechanical testing stage (DEBEN, 5000S)
- Universal testing machine with a thermostatic chamber (Zwick/Roell, Z010TH) and a peeling test setup
- Thermocamera (FLIR, T640bx)
- Photocamera for electroluminesce (PCO, 1300 Solar)
- 3D displacement correlation technique (Correlated Solutions, VIC3D)

Research topics

Graphene and thermal-barrier coatings

Fibrous materials (paper tissue)

Durability of photovoltaics

Flexible electronics

Fracture of polycrystals

Reaction-diffusion systems (for fluids and solids)

Graphene-based printable electronics

Photovoltaics (PV)

Applications: from PV parks to building integrated PV

Endorsement and collaborations

International Energy Agency

Photovoltaic Power Systems Programme (PVPS) Task 13 on Performance and Reliability of Photovoltaic Systems

Joint Research Centre

Institute for Energy and Transport

Institute for Solar Energy Research Hamelin, Germany

Solbian Energie Alternative S.r.I. Avigliana, Italy

Applied Materials Italia S.r.l. Olmi di S. Biagio di Callalta, Italy

Jabil, Industrial and Energy San Petersburg, Florida, USA

ƏLBIAN

SFH

A INTERNATION	AL ENERGY AGENCY
	LEAD TO A
	Assessment of Photovoltaic Module Failures in the Field
S	1 2 3 4 3 6 7 8 9 10 11 12 13 16 15 16 17 16 15 20 20+ Time clayeas
	PHOTOVOLTAIC
	POWER SYSTEMS
	PROGRAMME
2	Report IEA-PVPS T13-09:2017

Durability

Some failure modes of PV modules:

- 1. Cracks
- 2. Decohesion of the encapsulant
- 3. Moisture-induced degradation

Computational methods for stress analysis and fracture mechanics of shells

Global/local finite element approach

Paggi M, Berardone I, Corrado M (2016) A global/local approach for the prediction of the electric response of cracked solar cells in photovoltaic modules under the action of mechanical loads. Eng. Fract. Mech., 168:40-57.

Fracture of polycrystalline solar cells: a variational approach

- Cohesive fracture along pre-existing interfaces, Γ_i
- B. Bourdin, G.A. Francfort, J.J. Marigo (2008) J. Elast. 91:5
- C. Miehe, M. Hofacker, F. Welschinger (2010) CMAME 199:2765

M. Paggi, J. Reinoso (2017) Revisiting the problem of a crack impinging on an interface: a framework for the interaction between the phase field approach for brittle fracture and the interface cohesive zone model, CMAME, 321:145

0

$$\Pi(\mathbf{u},\Gamma) = \Pi_{\Omega}(\mathbf{u},\Gamma) + \Pi_{\Gamma}(\Gamma) = \int_{\Omega\setminus\Gamma} \psi^{e}(\boldsymbol{\varepsilon}) \,\mathrm{d}\Omega + \int_{\Gamma} \mathcal{G}_{c} \,\mathrm{d}\Gamma$$

Elastic strain energy density

Dissipated energy due to fracture

$$\Pi_{\Gamma} = \Pi_{\Gamma_{b}} + \Pi_{\Gamma_{i}} = \int_{\Gamma_{b}} \mathcal{G}_{c}^{b}(\mathbf{u}, \boldsymbol{\vartheta}) \, \mathrm{d}\Gamma + \int_{\Gamma_{i}} \mathcal{G}_{i}^{i}(\mathbf{g}, \boldsymbol{\vartheta}) \, \mathrm{d}\Gamma$$
Dissipated energy in the bulk
(Griffith fracture)
Dissipated energy
along interfaces
(CZM)

Contribution to the functional related to the bulk:

$$\Pi_b(\mathbf{u},\Gamma_b) = \Pi_\Omega(\mathbf{u},\Gamma_b) + \Pi_{\Gamma_b}(\Gamma_b) = \int_{\Omega\setminus\Gamma} \psi^e(\boldsymbol{\varepsilon}) \,\mathrm{d}\Omega + \int_{\Gamma_b} \mathcal{G}_c^b(\mathbf{u},\boldsymbol{\mathfrak{d}}) \,\mathrm{d}\Gamma$$

IMT SCUOLA ALTI STUDI (1) phase field for brittle fracture in the bulk

$$\Pi_b(\mathbf{u},\Gamma_b) = \Pi_\Omega(\mathbf{u},\Gamma_b) + \Pi_{\Gamma_b}(\Gamma_b) = \int_{\Omega\setminus\Gamma} \psi^e(\boldsymbol{\varepsilon}) \,\mathrm{d}\Omega + \int_{\Gamma_b} \mathcal{G}_c^b(\mathbf{u},\boldsymbol{\vartheta}) \,\mathrm{d}\Gamma$$

Phase field (nonlocal) regularization of energy dissipation in the bulk:

$$\begin{split} \Pi_b(\mathbf{u}, \mathfrak{d}) &= \int_{\Omega} \psi(\boldsymbol{\varepsilon}, \mathfrak{d}) \,\mathrm{d}\Omega + \int_{\Omega} \mathcal{G}_c^b \gamma(\mathfrak{d}, \nabla_{\mathbf{x}} \mathfrak{d}) \,\mathrm{d}\Omega \\ \gamma(\mathfrak{d}, \nabla_{\mathbf{x}} \mathfrak{d}) &= \frac{1}{2l} \mathfrak{d}^2 + \frac{l}{2} \|\nabla_{\mathbf{x}} \mathfrak{d}\|^2 \quad \text{Crack density functional} \end{split}$$

ALTI STUDI LUCCA (1) phase field for brittle fracture in the bulk

Positive-negative decomposition of the strain energy (Miehe, 2010):

$$\begin{split} \psi(\boldsymbol{\varepsilon}, \boldsymbol{\vartheta}) &= \mathfrak{g}(\boldsymbol{\vartheta})\psi_{+}^{e}(\boldsymbol{\varepsilon}) + \psi_{-}^{e}(\boldsymbol{\varepsilon}) \\ \psi_{+}^{e}(\boldsymbol{\varepsilon}) &= \frac{\lambda}{2} \left(\langle \operatorname{tr}[\boldsymbol{\varepsilon}] \rangle_{+} \right)^{2} + \mu \operatorname{tr}[\boldsymbol{\varepsilon}_{+}^{2}] \\ \psi_{-}^{e}(\boldsymbol{\varepsilon}) &= \frac{\lambda}{2} \left(\langle \operatorname{tr}[\boldsymbol{\varepsilon}] \rangle_{-} \right)^{2} + \mu \operatorname{tr}[\boldsymbol{\varepsilon}_{-}^{2}] \end{split}$$

Degradation function (Miehe, 2010): $\mathfrak{g}(\mathfrak{d}) = (1 - \mathfrak{d})^2 + \mathcal{K}$

Stress tensor:

$$\boldsymbol{\sigma} := \frac{\partial \hat{\psi}}{\partial \boldsymbol{\varepsilon}} = \boldsymbol{\mathfrak{g}}(\boldsymbol{\mathfrak{d}})\boldsymbol{\sigma}_{+} + \boldsymbol{\sigma}_{-} \qquad \boldsymbol{\sigma}_{\pm} = \lambda\left(\langle \operatorname{tr}[\boldsymbol{\varepsilon}] \rangle_{\pm}\right) \mathbf{1} + 2\mu\boldsymbol{\varepsilon}_{\pm}$$

(2) Cohesive Zone Model for interfaces

$$\sigma = \begin{cases} k_n \frac{g_n}{g_{nc}}, & \text{if } 0 < \frac{g_n}{g_{nc}} < 1 \\ 0, & \text{if } \frac{g_n}{g_{nc}} \ge 1 \end{cases}$$

$$g_{nc}(\mathfrak{d}) = (1 - \mathfrak{d})g_{nc,0} + \mathfrak{d}g_{nc,1}$$
$$g_{nc,0} = g_{nc}(\mathfrak{d} = 0)$$
$$g_{nc,1} = g_{nc}(\mathfrak{d} = 1)$$

Mode I frac independen damage in [•]

ode I fracture energy
dependent of the phase field
amage in the bulk:
$$\mathcal{G}_{IC}^{i} = \frac{1}{2}k_{n}g_{nc}^{2}$$

$$\mathcal{G}_{IC}^{i} = \frac{1}{2}k_{n}g_{nc}^{2}$$

$$\mathcal{G}_{IC}^{i} = \frac{1}{2}k_{n}g_{nc}^{2}$$

$$\mathcal{G}_{IC}^{i} = \frac{1}{2}k_{n}g_{nc}^{2}$$

 σ

(2) Cohesive Zone Model for interfaces

SCUOLA

LUCCA

Test problem: SCUOLA **ALTI STUDI** crack perpendicular to a bi-material interface

Dundurs' parameters:

LUCCA

$$\alpha = \frac{\mu_1(1-\nu_2) - \mu_2(1-\nu_1)}{\mu_1(1-\nu_2) + \mu_2(1-\nu_1)}$$
$$\beta = \frac{\mu_1(1-2\nu_2) - \mu_2(1-2\nu_1)}{\mu_1(1-\nu_2) + \mu_2(1-\nu_1)}$$

(A)

0.000252

v/L

-0.000252

-0

Interlaminar vs. translaminar crack growths

Fracture in anisotropic poly-Silicon

- Anisotropic constitutive tensor for the polycrystals
- Fracture toughness of the grains dependent on their orientation

Transgranular fracture

M. Paggi, M. Corrado, J. Reinoso (2018) Fracture of solar-grade anisotropic polycrystalline Silicon: A combined phase field–cohesive zone model approach, Computer Methods in Applied Mechanics and Engineering, 330:123-148.

Brittle fracture in solids modeled via a nonlocal smeared crack approach

Miehe, C., Hofacker, M., Welschinger F. (2010) A phase field model for rate independent crack propagation: robust algorithmic implementation based on operator splits. Comput. Methods Appl. Mech. Engrg. 199(45-48):2765--2778.

 Γ_c

 \mathcal{B}_0

 E_3

*E*₁

 \mathbf{X}_t

 \mathbf{X}_{b}

 \mathbf{G}_3

 \mathbf{G}_2

 \mathbf{G}_1

Geometry interpolation

$$\mathbf{X}(\boldsymbol{\xi}) = \frac{1}{2} \left(1 + \xi^3 \right) \mathbf{X}_t(\xi^1, \xi^2) + \frac{1}{2} \left(1 - \xi^3 \right) \mathbf{X}_b(\xi^1, \xi^2)$$

Phase field interpolation

$$\mathfrak{d}(\xi^1,\xi^2,\xi^3) = \frac{1}{2} \left(1+\xi^3\right) \mathfrak{d}_t(\xi^1,\xi^2) + \frac{1}{2} \left(1-\xi^3\right) \mathfrak{d}_b(\xi^1,\xi^2)$$

Variational form including the EAS method to prevent locking

$$\Pi(\mathbf{S}, \tilde{\mathbf{E}}, \mathbf{u}, \mathfrak{d}) = \int_{\mathcal{B}_0} \mathfrak{g}(\mathfrak{d}) \Psi(\mathbf{E}^u, \tilde{\mathbf{E}}) \, \mathrm{d}\Omega - \int_{\mathcal{B}_0} \mathbf{S} : \tilde{\mathbf{E}} \, \mathrm{d}\Omega + \int_{\mathcal{B}_0} \frac{\mathcal{G}_c l}{2} \left(\frac{\mathfrak{d}^2}{l^2} + |\nabla_{\mathbf{X}} \mathfrak{d}|^2 \right) \, \mathrm{d}\Omega + \Pi_{\mathrm{ext}}$$

$$\overline{\Psi}(\mathbf{E}^u, \tilde{\mathbf{E}}, \mathfrak{d}) = \mathfrak{g}(\mathfrak{d}) \Psi(\mathbf{E}^u, \tilde{\mathbf{E}}), \quad \text{with} \quad \mathfrak{g}(\mathfrak{d}) = [1 - \mathfrak{d}]^2 + \mathcal{K} \qquad \begin{array}{c} \mathsf{Phase-field} \\ \mathsf{stiffness degradation} \\ \mathsf{for incompatible strains} \end{array}$$

$$\bullet \quad Poisson thickness locking \\ \mathsf{Unmodified 3D material laws} \\ \bullet \quad \mathsf{Volumetric locking} \end{array}$$

- Monolithic and fully implicit formulation
- Phase field interpolation through the shell thickness
- ANS + EAS technologies (for Poisson thickness and volumetric locking pathologies)
- Linear elastic and nonlinear elastic constitutive relations
- FEAP & Abaqus implementation

J. Reinoso, M. Paggi, C. Linder (2017) Phase field modeling of brittle fracture for enhanced assumed strain shells at large deformations: formulation and finite element implementation, **Computational Mechanics**, DOI 10.1007/s00466-017-1386-3

J. Reinoso, M. Paggi, C. Linder (2017) Phase field modeling of brittle fracture for enhanced assumed strain shells at large deformations: formulation and finite element implementation, **Computational Mechanics**, DOI 10.1007/s00466-017-1386-3

J. Reinoso, M. Paggi, C. Linder (2017) Phase field modeling of brittle fracture for enhanced assumed strain shells at large deformations: formulation and finite element implementation, **Computational Mechanics**, DOI 10.1007/s00466-017-1386-3

Acknowledgements

http://musam.imtlucca.it

https://www.facebook.com/fanpagemusam

Multi-field and multi-scale Computational Approach to design and durability of Photovoltaic Modules – CA2PVM

