Efficiency and durability of photovoltaic modules: experimental methods and computational modelling Alberto Giacardi alberto.giacardi@polito.it - Marco Paggi marco.paggi@polito.it Polytechnic of Turin- Department of Structural, Geotechnical and Building Engineering

AIMS AND OUTLOOK

Development of an integrated experimentalcomputational methodology to assess the durability of photovoltaic (PV) modules for forensics inspections and material qualification by considering the problem of microcracking in polycrystalline Silicon (Si).

COMPUTATIONAL APPROACH

An innovative multi-scale and multi-physics FEM is proposed [2] to simulate the effect of microcracking on the electric response of the module (Fig. 5). The electrical inactive areas (Fig. 6a) and the I-V curve of PV modules (Fig. 6b) can be predicted for any kind of loading scenario.

PV modules can be efficiently integrated in buildings (Fig. 1). The pay-off time of this technology is 3 years and the solar energy conversion efficiency is still low, although it has been increased up to 20%. Warranty specifics of producers expect significant power-losses due to microcracking during the lifetime of PV modules (Fig. 2).

Fig. 1: examples of PV installations.

Fig. 5: multi-scale FE computational model.

EXPERIMENTAL METHODS

Microcracking can be qualitative assessed in situ by inspecting PV modules with a thermocamera (Fig. 3a). In the laboratory, a higher resolution can be achieved by using the electroluminescence technique (Fig. 3b).

Fig. 6: (a) simulated microcracked areas in a 3x3 PV module subjected to snow pressure and related I-V characteristics (b).

REFERENCES

[1] S. Kajari-Schröder, I. Kunze, U. Eitner, M. Köntges (2011) Solar Energy Materials and Solar Cells, 95:3054–3059.

[2] M. Paggi, M. Corrado, M.A. Rodriguez (2012) Composite Structures, in press, DOI:10.1016/j.compstruct.2012.08.014.

ACKNOWLEDGMENTS

The leading research based on these results has received funding from the European Research Council (FP/2007-2013, ERC Grant Agreement No. 306622 - ERC Starting Grant Multifield and Multi-scale Computational Approach to Design and **Durability of PhotoVoltaic Modules) and from the Italian** Ministry of Education, University and Research (Project FIRB 2010 Future in Research No. RBFR107AKG - Structural **Mechanics Models for Renewable Energy Applications).**

Fig. 3: (a) Thermocamera image. (b) Electroluminescence image showing electrical inactive areas (in black) due to microcracking [2].

