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Introduction 

• Cohesive Zone Model 

• Extension to coupled thermoelastic problems 

 Traction-opening relations are taken into account and combined with 

heat flux-opening relations based on contact mechanics  

  The purpose is twofold : 

 1. To generalize thermoelastic contact analysis to fracture                               
(Zavarise et al. 1992; Wriggers and Zavarise, 1993) 

 2. To propose a thermal model more physically sound than the 

others presented in the Literature (es. Kapitza’s model)                 

(Hattiangadi&Siegmund 2004; Yvonnet et al. 2010; Özdemir et al., 2010) 

• Conclusions 



Cohesive Zone Model  (CZM) 
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Double cantilever beam test 



CZM: applications 

MgCa0.8: biomedical stents 

Silicon cells: 

photovoltaic modules 

Paggi and Sapora, Energy Procedia (2013) 

Paggi et al., Computational Mechanics (2012) 
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Open issues: 

How is possible to relate the shape of the CZM to physics/mechanics? 

CZM: constituive law 
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Fracture / contact mechanics 
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Stress-free crack 

Full contact 

 

Perfect bonding  

Partial decohesion 

Partial contact  

p=-s p=pC p=0 

gn=0 gn 

  
Paggi and Barber, International Journal of Heat and Mass Transfer  (2011) 

 

The introduction of “rms”, the root mean square of asperity heights reveals 

to be necessary for an accurate analysis.. 
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Cohesive stress 
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Greenwood and Williamson, Proceedings of the Royal Society of London (1966) 



Cohesive heat flux 

q -kint(gn) DT 
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Kapitza model 

N.B. Interface conductance proportional to the normal stiffness: 
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Barber, Proceedings of the Royal Society of London (2003) 



Xu and Needleman, Journal of the Mechanics and Physics of Solids (1994) 

Özdemir et al. Computational Mechanics (2010) 

Comparison with other models 

               Stress                                           Conductance 

(l0/rms = 0.5) 

Inflection point 



Formulation of the problem: 1 

int

: ( )d ( )d ( )dS ( )dST T T

V V S S

δ V δ V δ δ      S w f w σ w σ w

T  S f 0

V: volume 

S: surface 

 

S: Cauchy stress tensor 

f: body force vector 

w:  displacement vector 

Strong form: 

Weak form (PVW):  



Formulation of the problem: 2 

int

( )d ( )  d ( ) dS ( ) dST T

V V S S

δT V ρcT Q δT V δ q δT  -     q q w

T Q ρcT-  q

V: volume 

S: surface 

 

q: heat flux vector 

Q: heat generation 

T:  temperature 

     Strong form: 

 Weak form (variational form of the energy balance):  



FEA: interface element 

int

int dT

S

δG δ S  g p

int
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T

S

δG δ S  g Cg

Gap vector: 

g=(gt,gn,gT)T 

 

Flux vector: 

p=(τ,σ,q)T 

 

Weak form for the interface elements: 

Consistent linearization of the interface constitutive law 

(quadratic convergence in the Newton-Raphson scheme): 

p Cg

Paggi M, Wriggers P. Comp. Mat. Sci. (2012) 



FEA: constitutive matrix C 
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Thermoelastic effect 

Tangent matrix for the Newton Raphson algorithm:  



Let us focus our attention on the transient regime. Buckingham’s Theorem allows us 

reducing the dependency of T* (combination of T, Ti and TL) to four parameters: 

Parametric analysis 

TL<Ti 

y*= y/L = 0.5 

l0/rms = 0.01  

 v = 0.1 

 

Ti Ti 



Results 1 

σ*
max = 0.032,  g*

nc=0.05 

Temperature field as time varies (y*= y/L = 0.5) 



Results 2 

σ*
max = 0.032,  g*

nc=0.05 

Displacement field as time varies (y*= y/L = 0.5) 

 



Results 3 

Let us compare the CZM results with kint=1/rint :    

        TEMPERATURE GAP                                            DISPLACEMENT GAP 

Neglecting thermoelastic coupling leads to different  

thermal and elastic behaviors.. 



An analogous behavior is observed by modifying g*
nc (σ

*
max fixed )  

Results 4 

Temperature field as σ*
max varies (t*=200) 

 



Conclusions 

A thermo-mechanical CZM inspired by contact mechanics 

between rough surfaces has been put forward: the interface 

conductivity results to be a function of cohesive stresses 

  

Thermo-elastic effects related to the transient regime are 

investigated, with particular attention to:  

i) the time evolution of the temperature and displacement 

ii) the influence of the cohesive parameters on fracture initiation  

 

Future perspectives: 

i) numerical solution of 2D problems in the presence of 

multiple micro-cracks  

ii) coupling between the electric and the thermal fields 



Acknowledgements 

FIRB Future in Research 

 

Structural Mechanics Models  

for Renewable Energy Applications, RBFR107AKG 



Thanks  

for your attention 


