SEECCM III Conference

III South-East European Conference on Computational Mechanics 12-14 June 2013, Kos Island, Greece

Identification of interface constitutive law from global stiffness data: a numerical optimization approach

M. Paggi*, J.R. Barber**

*Politecnico di Torino, Italy **University of Michigan, USA

- 1. Interface contact conductance and the role of boundary conditions
- 2. An inverse problem
- 3. Results of the identification analysis
- 4. A size-independent interface constitutive law due to roughness
- 5. Conclusions

Interface contact conductance: motivations

Inverse problem

Aim: identify the interface contact conductance from global stiffness data

Interface contact conductance

The contact conductance is proportional to the contact stiffness (Barber, PRS 2003; Paggi and Barber, IJHMT 2011)

Reference BEM solution by varying the surface size

Identification of the interface constitutive law

1. Solve the contact problem using BEM (P)

Imagine the surface as a collection of punches with constitutive law p
(d*) to be identified

3. Solve the new contact problem (P) and identify the constitutive law by minimizing the error w.r.t. BEM solution:

$$\mathrm{Error} = \frac{1}{\left(\mathrm{s}_{\mathrm{max}} - \mathrm{s}_{\mathrm{min}}\right)} \sum_{\mathrm{i}=\mathrm{s}_{\mathrm{min}}}^{\mathrm{s}_{\mathrm{max}}} \left(\widehat{\mathrm{P}}_{\mathrm{i}} - \mathrm{P}_{\mathrm{i}}\right)^{2}$$

Cubic splines approximation

$$\widetilde{p} = \begin{cases} s_1(d^*) & \text{if } d_1^* \le d^* < d_2^* \\ s_2(d^*) & \text{if } d_2^* \le d^* < d_3^* \\ \dots & \dots \\ s_{l-1}(d^*) & \text{if } d_{l-1}^* \le d^* < d_l^* \end{cases}$$

$$s_i(d^*) = a_i(d^* - d_i^*)^3 + b_i(d^* - d_i^*)^2 + c_i(d^* - d_i^*) + e_i$$

l=5 (4 intervals, 5 nodal points to be identified)

Parametric analysis with 5 values for each parameter, 10 contact steps for each set: 10x5⁵=31250 contact steps

4 days of computing time

Cubic splines approximation

Cubic splines approximation

 $\widetilde{C} = \Phi \, \widetilde{p}^{\beta}$

$$\widetilde{p} = \left[\frac{\Phi}{2}(1-\beta)\left(d_0^* - d^*\right)\right]^{\frac{1}{1-\beta}} = A\left(d_0^* - d^*\right)^{\frac{1}{1-\beta}}$$

Polynomial series expansion

$$\widetilde{p} = \sum_{m} A_m \left(d^*_{0,m} - d^* \right)^m$$

$$\beta = 0.8 \rightarrow m = 5$$

m	A_m	$d^*_{0,m}$	Error $(\times 10^{-3})$
5	3.5×10^{-4}	4.75	5.0
4	-1.3×10^{-4}	4.75	30.0
	-2.6×10^{-4}	4.75	76.7
	1.3×10^{-4}	4.75	6.5
	2.6×10^{-4}	4.75	23.1
	5.2×10^{-4}	4.75	100.0
	2.6×10^{-4}	3.80	5.7
	2.6×10^{-4}	4.17	4.3
	2.6×10^{-4}	4.39	5.3
3	$9.3 imes 10^{-5}$	4.17	4.3
	1.9×10^{-4}	4.17	4.6
	3.7×10^{-4}	4.17	6.1
	-9.3×10^{-5}	4.17	4.6
	-1.9×10^{-4}	4.17	5.1
	9.3×10^{-5}	3.80	4.3
	9.3×10^{-5}	3.44	4.2

1 term polynomial (m=5): the effect of sample size

1 term polynomial (m=5): the effect of sample size

A pressure-separation relation due to roughness has been identified by solving an otpimization problem

A critical examination of the identification results supports the existence of a power-law relation between contact conductance and contact pressure, in agreement with previous dimensional analysis considerations

The identified interface constitutive law is proven to be size-scale independent

FIRB Future in Research 2010 RBFR107AKG Structural Mechanics Models for Renewable Energy Applications

Please contact marco.paggi@polito.it for PhD and post-doc positions