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Preface 

 
Contact mechanics is a fundamental discipline of the engineering sciences and plays a major role in the 

understanding of a large number of physical phenomena related to surface interactions between solids. 

Contact problems are essential for adhesion, friction, capillarity, hydrophobicity, lubrication, thermal and 

electric conduction across interfaces, control of frictionally-induced vibrations and wear. Moreover, 

applications cover a large number of scales and range from natural systems like geological faults, 

engineering systems such as structural adhesives, protective coatings, seals, brakes, clutches, down to micro- 

or nano-devices used in electro-mechanical systems, and to biological materials and bio-inspired interfaces. 

In this very active research area, progresses have been made as far as the mathematical description of 

unilateral contact problems, the uniqueness of their solution and the development of computational methods 

are concerned. 

The purpose of this EUROMECH colloquium featuring 43 invited lectures is to provide an exploratory 

multi-disciplinary workshop where engineers, mathematicians and physicists can meet and discuss about the 

latest trends in mathematical modelling, computational methods and experimental research on coupled 

problems in surface phenomena, a topic still largely unchallenged due to its inherent complexity. In 

particular, areas of interest regard the solution of contact problems with smooth or rough boundaries in the 

presence of multiple fields (mechanical, thermal, electro-magnetic, hygrometric fields, chemical reactions, 

etc.). These multi-physics problems are important in geomechanics and civil engineering (chemo-mechanical 

coupling in meso-scale models of soil and concrete; fluid-structure interaction at structural interfaces; 

thermo-hygro-mechanical coupling at interfaces for building materials; contemporaneous presence of 

fracture and contact at interfaces), in materials for energy applications (thermo-chemo-mechanical coupling 

at interfaces in solid oxide fuel cells; thermo-electro-mechanical coupling at cracks in solar cells), in bio-

mechanics (effect of humidity on contact and wear of hard tissues), in mechanical engineering (coupled 

tangential and normal contact problems), electronics (thermo-mechanical response of bi-material interfaces 

in MEMS; sealing of bi-material interfaces), and in a wide range of other surface phenomena. 
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Nominally static frictional contacts under periodic loading

J. R. Barber1
1Department of Mechanical Engineering, University of Michigan, U. S. A.
E-mail: jbarber@umich.edu

Keywords: Fretting, microslip, shakedown, frictional damping.

Nominally static contacts such as bolted or shrink-fit joints typically experience regions of mi-
croslip when subjected to oscillatory loading. This results in energy dissipation, reflected as apparent
hysteretic damping of the system, and also may cause the initiation and propagation of fretting fa-
tigue cracks. Early theoretical studies of periodic tangential loading of the Hertzian contact problem
by Cattaneo [1] and Mindlin [2] were confirmed experimentally by Johnson [3], who identified
signs of fretting damage in the slip annulus predicted by the theory. When both normal and tangen-
tial forces vary in time, the energy dissipation is very sensitive to the relative phase of the oscillatory
components, being greatest when they are out of phase [4].

For many years, tribologists assumed that Melan’s theorem in plasticity could be extended to
frictional systems — i.e. that if there exists a state of residual stress associated with frictional slip that
is sufficient to prevent periodic slip in the steady state, then the system will shake down, regardless
of the initial conditions. However, we now know that this is true only if there is no coupling between
the normal and tangential loading problems, as will arise notably in the case where contact occurs on
a symmetry plane [5]. We have also recently established that for uncoupled systems, the dissipation
per cycle above the shakedown limit is independent of initial conditions [6].

For all other cases, periodic loading scenarios can be devised such that shakedown occurs for
some initial conditions and not for others. The initial condition here might be determined by the
assembly protocol — e.g. the order in which a set of bolts is tightened — or by the exact loading path
before the steady cycle is attained. This non-uniqueness of the steady state persists at load amplitudes
above the shakedown limit, in which case there is always some dissipation, but the dissipation per
cycle (and hence both the effective damping and the susceptibility to fretting damage) may depend
on the initial conditions. This also implies that fretting fatigue experiments need to follow a well-
defined assembly protocol if reproducible results are to be obtained. For two-dimensional systems,
a criterion for unconditional shakedown can be established, based on the properties of the contact
stiffness matrix [7].

Dependence on initial conditions or loading history implies that the frictional system posesses
‘memory’, which we postulate resides in the locked-in slip displacements at regions that are not at
a given time slipping. If all nodes slip at least once during the cycle (but not all at once, which
would constitute ‘gross slip’ or sliding), the memory must be periodically exchanged between nodes
and this generally leads to a degradation of memory and hence an asymptotic approach to a unique
steady state. However, systems can be identified [typically involving significant normal-tangential
coupling] in which there exist several such distinct steady-states, some of which are stable (attrac-
tors) and some unstable. If on the other hand there exists a region that never slips during the steady
state [the permanent stick zone] then there will exist a real infinity of possible steady states associated
with variation in locked-in displacements in this region.

With sufficient clamping force, ‘complete’ contacts (i.e. those in which the contact area is inde-
pendent of the normal load) can theoretically be prevented from slipping, but on the microscale, all



contacts are incomplete because of surface roughness and some microslip is inevitable. In this case,
the local energy dissipation density can be estimated from relatively coarse-scale roughness models,
based on a solution of the corresponding ‘full stick’ problem [8].
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Simulations of tribological phenomena using a structural block with
nano and micro levels of roughness

Feodor M. Borodich1, Ovidiu Savencu1,2
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Structural models of rough surfaces, i.e. models whose structure is described explicitly or in a
statistical way, are widely used in tribology. A very popular model is a statistical structural model
that presents all surface protuberances as elastic spheres having different heights but the same radius
of curvature of summits. The model was originally proposed by Zhuravlev [1] and it was later
developed by Kragelsky [2] and by Greenwood and Williamson [3].

In the framework of this ZGW model, it was shown for many functions of distributions of the
heights of the surface protuberances, the true contact area is approximately proportional to the ex-
ternal compressing force. Assuming the frictional force is caused by molecular interaction between
atoms and proportional to the true contact area S, Zhuravlev gave an explanation of the Amontons-
Kotelnikov law of friction Ff = μP where Ff is the friction force, μ is the coefficient of friction
(COF), and P is the normal load (in fact, Amontons (1699) gave a verbal formulation of the law as
three relations observed for optical lens polishing process, while Kotelnikov (1774) introduced the
notion of coefficient of friction μ and presented the law as a formula). However, the ZGW model
was later criticized. The main criticism was that the radii of the asperity spheres depend on the
scale of consideration; hence the model is scale dependent. In addition, the molecular adhesion
between rubbing surfaces was neglected and the hierarchical character of roughness discovered by
Archard [4] was not reflected in the model. Finally it did not consider the possible interplay between
asperities during the shift of the surfaces.

We present a structural model of a nominally flat block having hierarchical structure. The pro-
posed model is used for numerical simulations of frictional motion of the block sliding along a rough
surface. Because both surfaces are rough, the true contact area changes during sliding and, therefore,
the friction is not constant. The goal is to develop such a model of roughness that has experimentally
observed tribological characteristics and it is free from the above drawbacks of the ZGW model. The
main features of the proposed model are the following.

(i) The model reflects the hierarchical structure of the rough surfaces (this idea was discussed in
a number of papers); the employment of two level (nano and micro) measurements of the roughness
allows us to reflect the complex structure of real surfaces better than the conventional models.

(ii) The model takes into account both elastic contact and the molecular adhesion between the
counterparts; the adhesion is described using an approach that is similar to the Maugis step-function
description of the adhesive zone.

(iii) It is assumed that the true COF is constant; we follow the Derjaguin idea [5] of distinguishing
between the true COF μt and the apparent COF μa where and p0 is the specific attractive force,

μt =
Ff

P + Sp0
and μa =

Ff

P
.



(iv) The parameters of the first level of the model (the nano-scale roughness) are extracted from
the AFM measurements of the surface roughness, while the parameters of the next level of the
model (the micro-scale roughness) are extracted from the data obtained by the measuring of the
same surface by a stylus; the elastic properties of the third level are the same as the elastic properties
of the bulk material.

(v) The surface roughness is represented not only by rms heights, and the size of asperities but
also the average distance (λ) between asperities.

(vi) The average width of asperities at each level is calculated according to the corresponding
experimental Abbott bearing curve.

(vii) The asperities of each level are represented not as spheres but rather as elastic flat-ended
rods. This idea was borrowed from Kragelsy’s modification of the ZGW model [2] and from
Borodich & Onishchenko [6, 7] multilevel profile model.

Often the analysis of contact problems for rough surfaces is based on a multi-asperity approach.
This means that first the problem is solved for an asperity and then the solution is used to represent
the multi-asperity contact assuming that there is no influence of an asperity deformation on other
asperities. One of the specific features of the proposed model is that vertical deformation of an
asperity affects the whole system. The multiscale nature of the rough surface is taken into account
by just two (nano and micro) levels of roughness. The model under development takes into account
not only the hierarchical structure of roughness but also the adhesive interactions, the deformation
of asperities, transfer the deformations between levels of the hierarchical structure and the vertical
degree of freedom of the asperities. It is argued that the model can be extended in various ways.
For example, the model may be enhanced by introducing horizontal elastic interactions between
asperities [6, 8]. By removing some asperities of the structure, one can model the surface wear and
other surface phenomena.
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[5] Derjaguin, B.V., ”Molekulartheorie der äußeren Reibung”, Z. Physik, 88, 661-164 (1934).

[6] Borodich, F.M., Onishchenko, D.A., ”Fractal roughness in contact and friction problems (the simplest
models)”, J. Friction and Wear, 14, 14–19 (1993).

[7] Borodich, F.M. and Onishchenko, D.A. ”Similarity and fractality in the modelling of roughness by a
multilevel profile with hierarchical structure”, Int. J. Solids and Struct, 36(17), 2585-2612 (1999).

[8] Schmittbuhl, J., Vilotte, J.-P., Roux, S., Velocity weakening friction: A renormalization approach, J.
Geophys. Res., 101, 13911–13917 (1996).



A dynamic viscoelastic problem with slip dependent interfacial friction

Marius Cocou
LMA, Aix-Marseille University, CNRS, UPR 7051, Centrale Marseille, France
E-mail: cocou@lma.cnrs-mrs.fr

Keywords: Dynamic problems, viscoelasticity, slip depending friction, variational analysis.

This work is concerned with the extension of the recent results presented in [2] for some non-
smooth dynamic frictional contact problems to the case of a coefficient of friction depending on
the slip velocity [3]. This class of problems constitutes a unified approach to study some interface
models, including relaxed unilateral contact conditions, adhesion, and pointwise friction.

Dynamic viscoelastic contact problems with nonlocal friction laws were considered in [9, 6, 1, 4]
and the corresponding problems with normal compliance laws have been analyzed in [7, 8, 10].
Dynamic frictionless problems with adhesion have been studied by several authors, see, e.g. [12]
and references therein, and dynamic viscoelastic problems coupling unilateral contact, recoverable
adhesion and nonlocal friction have been investigated in [5].

Based on new variational formulations and some approximation results, the approach proposed
in [11] in the elastostatic case is extended to the dynamic contact between two viscoelastic bodies of
Kelvin-Voigt type. Finally, several examples are presented to illustrate the generality of the proposed
interfacial model.
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Mathématiques et Modélisation” is gratefully acknowledged.

References
[1] Cocou, M., ”Existence of solutions of a dynamic Signorini’s problem with nonlocal friction in

viscoelasticity”, Z. Angew. Math. Phys., 53, 1099-1109 (2002).

[2] Cocou, M., ”A class of dynamic contact problems with Coulomb friction in viscoelasticity”,
Nonlinear Analysis RWA, 22, 508-519 (2015).

[3] Cocou, M., ”A variational analysis of a class of dynamic problems with slip dependent fric-
tion”, Annals of the University of Bucharest (mathematical series), to appear.

[4] Cocou, M., Scarella, G., ”Analysis of a dynamic unilateral contact problem for a cracked
viscoelastic body”, Z. Angew. Math. Phys., 57, 523-546 (2006).

[5] Cocou, M., Schryve, M., Raous, M., ”A dynamic unilateral contact problem with adhesion and
friction in viscoelasticity”, Z. Angew. Math. Phys. (ZAMP), 61, 721-743 (2010).
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The first experimental evidence that Coulomb friction can induce flutter and divergence 

instability was given by Bigoni and Noselli [1], working on a special version of the Ziegler 

pendulum [2]. Experiments have fully confirmed the theoretical expectations and the instabilities 

have been proven to be robust to several perturbations in the experimental set-up [3]. 

 

Bigoni and Noselli were unable to  induce flutter more complicated systems that the Ziegler 

pendulum, such as for instance the Beck’s column [4]. The Bigoni and Noselli’s apparatus has 

therefore been completely redesigned in order to provide a more flexible testing apparatus. This 

new design has allowed us to experimentally investigate the behavior of the Beck column. Results 

on this and related problems will be presented in detail.  
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We present the results of our recent work, in which we apply the Finite Element Method in order
to numerically study the contact between an elastic smooth cube and several rigid rough surfaces.
Our goal is to compute the influence of different surface parameters on the real area of contact and
on the elastostatic friction force transferred at the contact boundary.

Every real surface is – at some length scale – rough. As a consequence, contact happening in
the real world is never smooth, especially at micro- or nano-scale. The influence of roughness on
contact features like the real area of contact and the stress distribution is the subject of different
theoretical models [1, 2, 3], but microscopic roughness also affects physical phenomena observed
at macroscopic scale, such as static and kinetic friction. Friction models often cite viscosity and
plasticity as causes for friction, neglecting or relegating to the second plane effects of purely elastic
interactions [4, 5, 6].

Figure 1: Surface of an elastic cube in contact with two different rough surfaces.

In our study, we apply the FEM at a microscopic length scale, but on a macroscopic domain. We
prove that – even in the frame of linear elasticity – non-negligible forces opposed to the tangential
sliding of the body can be measured, when computing the correct contact normals and employing a
sufficiently dense discretization of the elastic cube.

In order to resolve the strongly non-linear constraints arising from the geometric complexity of
the rough surfaces, we employ an SQP-like method, in which the solution of the contact problem is
obtained as a sequence of approximations computed with linearized contact constraints.

We focus on the determination of the real area of contact for different loads, and on the prediction
of static friction force generated only by the interactions of the rigid asperities with the elastic cube.



To compute the relation between normal force and real area of contact, we apply an incremental
load on top of the elastic cube. To measure static friction, we simulate shearing tests: the elastic
cube is first pushed onto the rough surface, and then sheared to a configuration in which the elastic
shear force is balanced by the resistance force transferred at the contact boundary. The studies are
performed on a broad range of surfaces, differing for roughness parameters such as Hurst exponent
and root mean square roughness.

We compare our predictions of the contact area to existing rough contact models (BGT, Persson),
and those of the friction force to experimental data [7, 8]. Our results show possible limits of ap-
plicability and reliability of the rough contact models, and are in good agreement with experimental
data.

Finally, we show that the numerical experiments we perform give reliable results only when
employing a very dense computational mesh. Thus a contact problem with 45 millions of unknowns
needs to be solved. For this reason, the experiments are performed with our massively parallel
multigrid based contact solver [9, 10], on machines with up to 2048 processors.
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The resonant response of a turbine airfoil is generally attenuated, especially in hot parts, with 

the use of "Coulomb dampers", also called "cottage-roof dampers", "underplatform dampers", or 

"friction dampers", which are loaded by centrifugal forces against the underside of two adiacent 

blades. In a classical study, Griffin [1] proposed a very simple model involving a single mass 

representing the blade, attached to the wall by a single spring (of stiffness k) in parallel with a 

Coulomb damper having a spring of stiffness kd (which could alternatively represent a contact 

stiffness at the level of asperities) and closed by a constant force N. This model is simple enough 

for an harmonic balance approximate solution to be developed in closed form, permitting to find 

the optimal normal load which corresponds to the optimal mass of the damper under the centrifugal 

force. This optimal load corresponds to a “bounded response” regime, mid-way between the 

resonant frequencies of the free- and that of the stuck-interface. Later studies have concentrated on 

more realistic models, including more degrees of freedom, variation of normal load in the damper, 

possible rolling motions of the damper, extended contact, etc. However, the simplicity is lost, it is 

not possible to gather information on the optimal configuration as in the basic Griffin findings. One 

may wonder, for example, if the influence of normal load variation would change the conclusions 

qualitatively. The effect of normal load variation in simple single degree of freedom model has 

been studied only by Jang and Barber [2] but in the quasi-static limit, suggesting a strong influence 

of the phase between normal and tangential loads. We have therefore recently studied the "Den 

Hartog" single degree of freedom model [3], both with a piecewise analytical solution joining all 

the slip phases, and with a full time-marching Newmark algorithm [4]. We found that dissipation 

can be much higher for quadrature (and generally out-of-phase) loading, as noticed also by Jang 

and Barber for the quasi-static limit. However, this does not correspond to higher "damping" of 

vibrations, but rather the opposite: indeed, for in-phase loads, variation of normal loads can lead to 

a large reduction of both dissipation and displacement, not expected from the quasi-static 

prediction. Here, we extend these results to the full Griffin model. 
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The transition from stick to slip in the classical Coulomb friction for Hertzian contact has been 

studied by Cattaneo and Mindlin. The present author has also generalized their method of 

superposing the full sliding component of shear with a corrective distribution in the stick region, for 

general geometries. Faults models in geophysics and recent high-speed highresolution measurement 

of the real contact area and strain fields for nominally flat rough interfaces at macroscopic but 

laboratory scale, all have suggested an alternative to Coulomb law, given by the classical Griffith 

fracture mechanics singular solutions of shear cracks. Here, we develop the extension of the CM 

solution for such a friction model, maintaining the Hertzian solution for the normal pressures, and 

Coulomb law in the slip region. The model departs from the standard Cattaneo-Mindlin solution for 

high toughness, showing an increased size of the stick zone relative to the contact area. Further, a 

sudden transition to slip when the stick region occurs at a critical size, which corresponds to the 

pull-off contact size of the JKR solution. An apparent static friction coefficient just before full 

sliding can be defined, and is higher than the sliding friction coefficient. Following experimental 

evidence as well as theoretical reasoning, a pressure-dependent friction "toughness" is also 

introduced, due to the sparseness of the contact area. Qualitative agreement with Fineberg’s group 

experiments in PMMA exists: if the stick-slip boundary quasi-static prediction corresponds to the 

arrest of their slip "precursors", then the rapid collapse to global sliding when the precursors arrest 

front has reached about half the interface, may be interpreted here to correspond to the "critical" size 

for the stick zone. Finally, we remark that even the original Cattaneo-Mindlin solution can resemble 

closely a singular solution, and the extracted apparent strength of the singularity can also be close 

to a value obtained from the singular solution. Therefore, a final evidence for the Griffith model of 

friction may require further effort, particularly as the effect of roughness in principle should destroy 

any effect of such singularities, as it does for adhesion according to the models of Fuller and Tabor. 

 

References 

 

[1]. Adams, G.G., Stick, partial slip and sliding in the plane strain micro contact of two elastic 

bodies. R. Soc.open sci. 1: 140363 (2014). 

[2]. Ben-David, O., Cohen G and Fineberg, J., The Dynamics of the Onset of Frictional Slip, 

Science: Vol. 330 no. 6001 pp. 211-214 (2010). 

[3]. Carpinteri, A., and Paggi. M., Size-scale effects on the friction coefficient. Int J Solids 

Struct42.9. 2901-2910 (2005). 

[4]. Cattaneo, C., 1938., Sul contatto di due corpi elastici: Distribuzione locale degli sforzi. 

Reconditi dell'Accademia nazionale dei Lincei, 27, 342-248, 434436, 474-478 (1938). 

[5]. Ciavarella M., "The generalized Cattaneo partial slip plane contact problem. I-Theory Int. 

J. Solids Struct., Vol. 35/18, pp. 2349-2362 (1998). 

[6]. Ciavarella, M., Tangential loading of general three-dimensional contacts. ASME J. Appl. 

Mech. 65, 998—1003 (1998). 

[7]. Dini, D., Hills D.A., Bounded asymptotic solutions for incomplete contacts in partial slip, 

Int J Solids StructVolume: 41, Issue: 24-25, 70497062 (2004) 



  

[8]. Kammer, D.S. Radiguet, M., Ampuero, JP, Molinari, JF, Linear elastic fracture mechanics 

predicts the propagation distance of frictional slip, http://arxiv.org/pdf/1408.4413.pdf 

(2014). 

[9]. Svetlizky I, and Fineberg, J., Classical shear cracks drive the onset of dry frictional motion, 

Nature 509, 205—208 (2014). 



 

 

 

 

 

 

 

Monday, March 30, 2015 

 

Third Session 

 

14:30-16:00 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Friction and universal contact area law for randomly rough viscoelastic
contacts

M. Scaraggi1,2 and B.N.J. Persson2
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We present accurate numerical results[1] for the friction force and the contact area for a vis-
coelastic solid (rubber) in sliding contact with hard, randomly rough substrates. The rough surfaces
are self-affine fractal with roughness over several decadesin length scales. We calculate the contri-
bution to the friction from the pulsating deformations induced by the substrate asperities. We also
calculate how the area of real contact,A(v, p), depends on the sliding speedv and on the nominal
contact pressurep, and we show how the contact area for any sliding speed can be obtained from a
universal master curveA(p), see Fig. 1. The numerical results are found to be in good agreement
with the predictions of an analytical contact mechanics theory.
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Figure 1: The numerically-calculated nominal contact areaA/A0 as a function of the reduced contact
pressure, for several values of roughness cut-off frequencies and sliding velocities. All the curves
appear superposed to an unique mastercurve. The red line hasa slope of2.
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Some types of a laminated safety glass consists of an interlayer surrounded by two thin films
(see in [1]). An optimal level of adhesion is then required for the safety glass to absorb enough
of the impact energy to prevent projectile penetration and delamination. Such considerations have
motivated us to study the behavior of such structures undergoing periodic strike like loading and
introduce the mathematical model of the structure behavior. The structure under consideration is
modeled as a string (cut from a thin film), an elastic foundation of which is assumed to be imperfect,
and which coefficient depends on a damage function of a substrate.The imperfection of an elastic
foundation is modeled by a damage function for which the evolution equation is introduced.The
governing equation is as follows:

γuxx −K(n)u− ρ0utt = Aδϵ(x− x0)
M∑
j=0

δ(t− j∆t), x ∈ (−∞,+∞), t > 0 (1)

where u is a displacement, A is an amplitude of an external force, ∆t is a time step for the strike, δϵ
is a smoothed δ function.The quantity K depends on n via the following relations

K(n) = µ(n)G(n), µ(n) =
k0

k0 +G(n)
(2)

where k0 > 0 is a constant, G(n) = G0(1 − n), 0 ≤ n ≤ 1; G(n) = 0, n > 1, Here G0 is a
constant. The time evolution of the damage function n(x, t) is defined by the differential equation

∂n

∂t
= βH(µ(n)|u| −∆)(1− n), (3)

where β,∆ > 0 are positive constants, and H is the Heaviside step function. we set the following
boundary and initial conditions u(x, t) → 0 (|x| → ∞);u(x, 0) = 0, ut(x, 0) = 0, x ∈
(−∞,+∞);n(x, 0) = n0(x), x ∈ (−∞,+∞) where n0 is a fast decreasing in |x| smooth func-
tion.If x ∈ [−h, h], we set the Dirichlet boundary condition u(h, t) = u(−h, t) = 0. Also we
assume that our material reached the full destruction at a point x at the moment t if the damage
parameter n(x, t) attain, at this moment, to some critical level n∗ close to 1(the elastic foundation
coefficient vanished and the delamintion occurs).Let us introduce the front of full destruction LF (t)
by the relation n∗ = n(LF (t), t), where n∗ is a critical damage level. The problem (1) for the case
when the structure was under harmonic loading was considered in [2].Here we will show that a wave
localization is also possible for the non-stationary loading as well. If β is small, then dn/dt << 1
and the coefficient K is a function of the slow time τ = βt. Therefore,we can use a quasi-stationary
approximation by the two-time scales perturbation method. We assume that β << 1 and K(n) is a



function of the slow time τ = βt. For each fixed τ , there occurs a Schrodinger operator associated
with this problem,

HΨ =
d2Ψ

dx2
− Φ(x, τ)Ψ = EΨ, Φ = γ−1(K(n(x, τ))− k0G0

k0 +G0
). (4)

The eigenfunctions Ψ may be localized ones, when Ψ = Ψj(x, τ), E = γ−1(k̄0 − ρ−1
0 ω2

j ), where
j = 1, ..., N(τ), and may belong to the continuous spectrum, when E = −k2 ≤ 0 and Ψ(x, k, τ)
have asymptotic exp(ikx) as x → +∞ and a(k) exp(ikx) + b(k) exp(−ikx) as x → −∞, where
a(k), b(k) are some coefficients.For the continuous spectrum it is useful to introduce the frequency ω
by E(k) = γ−1(k0 − ρ0ω

2(k)). The analysis shows that the following conclusions can be made:for
all times there always exists a localized eigenfunction and, thus, N(τ) ≥ 1; the mode number N
also can depend on τ and it increases in time. One can obtain an asymptotic solution consisting of
the two following contributions:

u(x, t, τ) = W (x, t, τ) + V (x, t, τ), (5)

where

V (x, t, τ) = −ρ−1
0

N(τ)∑
j=1

aj(cωj(0))
−1 sin(Sj(t))Ψj(x, τ) (6)

W (x, t, τ) = −ρ−1
0

∫ ∞

0

ak(τ)ω(k, 0)
−1Ψ(x, k, τ) sinS(k, t)dk, (7)

where

aj(τ) =

∫ ∞

−∞
δϵΨj(x, τ)dx, ak(τ) =

∫ ∞

−∞
δϵΨ(x, k, τ)dx. (8)

The asymptotic solutions where obtained for particular types of initial distributions of damaged
function n. From them it can be concluded: the second term determine the oscillating character
of the front motion, but for t >> 1 the wave term is larger and oscillations become smaller and
smaller.On the contrary, for k0 >> 1 the wave contribution is small. Using obtained solutions it was
possible to calculate the time when the destruction process start and also the time which is necessary
for a full destruction.We have two qualitatively different dynamics of the front. If the localized
mode amplitude is small with respect to the amplitude of the wave term the dynamics of the front
is linear. If the localized mode amplitude has the same order then the wave term amplitude, we
have alternation of time intervals,where LF increases, and time intervals where LF (t) is a constant.
Main effects exhibiting by the suggested model are as follows: 1. There is an incubation period
before the destruction process start. 2. A sequence of resonances has been found for a periodic
strike like loading. 3. There are possible transitions between destruction types and two types of the
front dynamics. 4. Three scenario of n(x, t) behavior has been found: a monotone growth of n;
a piecewise like constant growth of n (when n increases during some intervals and n is constant
between these growth intervals); no growth of n.

References
[1] Nanshu Lu et al.,Failure by simultaneous grain growth, strain localization, and interface

debonding in metal films on polymer substrates,J.Mater.Res., 24:2,379-385,2009.

[2] A.K.Abramyan et al.,Influence of dynamic processes in a film on damaged development in an
adhesive base,Mechanics of Solids 47,5:498-504,2012.



Problems of adhesive contact interactions between prestressed
biological cells

Feodor M. Borodich1, Boris A. Galanov2, Leon M. Keer3, Maria M. Suarez-Alvarez1
1School of Engineering, Cardiff University, UK
E-mail: BorodichFM@cardiff.ac.uk

2Institute for Problems in Materials Science, National Academy of Sciences of Ukraine, Ukraine
E-mail: galanov@ipms.kiev.ua

3Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
E-mail: l-keer@northwestern.edu

Keywords: Adhesion, biological cell, contact, prestresses, nanomanipulation.

We deal with effects caused by molecular adhesion between biological objects. Cell adhesion
is of crucial importance for numerous physiological and pathological processes, including embry-
onic development, and cancer metastasis, as well as for numerous biotechnological applications [1].
Here we consider problems of adhesive contact interactions between biological cells and other bio-
logical materials such that the classic geometrically linear formulation of the Hertz-type contact is
applicable, hence the classic JKR (Johnson, Kendall, and Roberts), DMT and Maugis theories may
be used. We assume also that the adhesive interaction may be reduced only to attraction between
points at the surfaces of the solids and by introduction of the work of adhesion, i.e. the Derjaguin
approximation is applicable [2]. Evidently, the present report does not cover all types of biological
cells because the structures of biological cells may vary, e.g. we do not consider living cells with
molecular brushes. However, we believe that our results can be applied to many types of smooth
cells, in particular to red blood cells (RBCs) that have been extensively studied as a relatively simple
example of biological cells whose membrane can be represented as composed of a skeleton and a
lipid bilayer. The JKR theory of adhesive contact has been widely used as a basis for modelling of
various phenomena, in particular biological phenomena such as adhesion of cells, viruses, attach-
ment devices of insects and so on [3–5]. However, the JKR theory was originally developed for
linearly elastic isotropic materials, while many biological objects have layered structure, i.e. they
are in fact transversely isotropic [2]. In addition, it is known that cell membranes can be considered
as presteressed non-linear materials, whose stiffness increases in proportion with the level of the
tensile prestress [6].

It is shown that the frictionless JKR model may be generalized to arbitrary convex, blunt axisym-
metric bodies, in particular to the case of the punch shape being described by monomial (power-law)
punches of an arbitrary degree d ≥ 1 [7]. The JKR and Boussinesq-Kendall models are particular
cases of the problems for monomial punches, when the degree of the punch d is equal to two or
it goes to infinity respectively. This describes the problem of interaction between a biosample and
a probe in the case that the probe shape near the tip has some deviation from its nominal shape
and the shape function can be approximated by a monomial function of radius. We show that the
generalized problems for monomial punches can be solved not only for frictionless but also for non-
slipping boundary conditions. It is shown that regardless of the boundary conditions, the solution to
the problems is reduced to the same dimensionless relations between the actual force, displacements



and contact radius. Explicit expressions are derived for the values of the pull-off force and for the
corresponding critical contact radius.

To consider the problems for cells we assume that first the cell membrane is prestressed and then
it comes into contact with a probe or another cell; the stress field due to the contact is just a small
perturbation of the large initial stresses; and the initial stress field can be considered as homogeneous.
We show that the obtained results and in particular the JKR theory for a sphere adhesion can be
extended to transversely isotropic [2] and prestressed materials [8]. We also show how the values
of the effective contact modulus for two cells or between a cell and material of the probe and the
work of adhesion for the same pairs may be quantified from a single test using a simple and robust
BG method [9, 10]. The method is based on an inverse analysis of a stable region of the force–
displacements curve obtained from the depth-sensing indentation of a sphere into an elastic sample.
Of course, the results for the effective contact modulus depend on the employed model of non-
linear elasticity. In particular, for the Mooney-Rivlin, harmonic, Treloar (neo-Hookean solid), and
Bartenev-Khazanovich potentials the solutions are given explicitely. Note that the cell membranes
are often described as materials of the neo-Hookean type.

The obtained results are related to (i) nanomanipulation of biological cells; (ii) probing of cell
membranes by AFM; (iii) determination of the elastic modulus of biomaterials and biological sam-
ples; (iv) determination of the work of adhesion for two cells or a cell and an artificial material of a
probe.
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Mucins are a major macromolecular component of mucus gels that are known to protect 

underlying epithelial surfaces against pathogen and mechanical insult. Mucins and mucus gels are 

renowned for their unique lubricity, not only for biological tissues, but also for various engineering 

materials in aqueous environment [1,2]. While previous studies have mainly focused on elucidating 

the generic lubricating behavior of mucin itself, in this study, we present that the lubricity of mucin 

films can be tailored by a number of different approaches, including purification, denaturants, 

mucoadhesive polymers, and solvent quality control, at a compliant sliding interface of self-mated 

polydimethylsiloxane (PDMS).  

Firstly, commercially available mucins are known to contain non-ignorable amount of impurities. 

Purification of BSM by anion exchange chromatography allowed us to discriminate the lubricating 

properties of BSM as influenced by impurities [3]. The presence of BSA was chiefly responsible for 

higher frictional forces observed from BSM samples as received from the manufacturer. The 

mechanisms contributing to higher friction forces by BSA were different at different contact length 

scales. At the macroscale contact, higher friction forces were caused by faster and dominant 

adsorption of BSA into the contacting area under a continuous cycle of desorption and re-adsorption 

of the macromolecules from tribostress. At the nanoscale contact, however, no significant desorption 

of the macromolecules is expected in tribological contacts because of too small contact area and 

extremely small number of BSM molecules involved in the contact area. Instead, increasingly higher 

friction forces with increasing amount of BSA in BSM layer are attributed to higher viscosity caused 

by BSA in the layer [4].  

Secondly, porcine gastric mucin (PGM) is known to reveal poor lubricity at neutral pH [1]. 

Nevertheless, exposure of PGM in denaturant, such GuHCl 6 M + 10 mM DTT, prior to the dialysis 

against deionized water showed that the lubricating properties of PGM solution were significantly 

improved in neutral pH aqueous solution. Adsorbed mass onto PDMS surface was not virtually 

altered by the treatment with denaturant, but the adsorption strength appeared to be substantially 

improved by denaturation of C- and N-terminal regions and may account for the improved lubricity.   

Thirdly, mucoadhesive polymers can be employed to enhance the lubricity of mucins layers. For 

example, a synergetic lubricating effect between porcine gastric mucin (PGM) and chitosan based 

on their mucoadhesive interaction was observed [5]. In acidic solution (pH 3.2) and low 

concentrations (0.1 mg mL−1), the interaction of PGM with chitosan led to surface recharge and size 

shrinkage of their aggregates. This resulted in higher mass adsorption on the PDMS surface with an 

increasing weight ratio of [chitosan]/[PGM + chitosan] up to 0.50. While neither PGM nor chitosan 

exhibited slippery characteristics, the coefficient of friction being close to 1, their mixture improved 

considerably the lubricating efficiency (the coefficient of friction is 0.011 at an optimum mixing 

ratio) and wear resistance of the adsorbed layers. These findings are explained by the role of chitosan 

as a physical crosslinker within the adsorbed PGM layers, resulting in higher cohesion and lower 

interlayer chain interpenetration and bridging.  

  



  
  

Figure 1: Illustration of the tribostress-induced removal of the adsorbed layers from the PDMS 

surface and their resistance to it in the presence of chitosan  

  

Lastly, as with many other synthetic and biological macromolecules, the lubricating properties of 

mucins are significantly influenced by solvent quality. For example, by addition of methanol or 

ethanol into the aqueous mucin solutions, the lubricity can be either improved or degraded, 

depending on the concentration of alcohols and type of mucins. Changes in surface adsorption 

kinetics and conformation of mucins on PDMS surfaces as a result of degraded solvent quality are 

considered to be responsible for the altered lubricity.   
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Elastic plane contacts, although a simplification of the reality, even today offer a good and easy 
approximation for many practical/usual contacts in mechanical engineering. Despite of the 
simplifications made in these models, only a few and very simply contact pairs are analytically 
solved in the bibliography. Furthermore, the amount of these solutions decreases if the interior stress 
field is required, and only in very seldom cases explicit equations are presented.  

Knowing this, the authors present a valuable procedure used to calculate the stress field in plane 
contacts between a punch and a half-plane. It is based on a certain property of Cauchy line integrals 
and a rewrite of the Flamant’s equations for the half-plane. This method is applied in two steps. The 
first one greatly simplifies both the obtention of complex Muskhelishvili potential and, in the case 
in which friction and tangential load are present, the calculation of direct stresses produced on the 
contact surface [1]. The second step allows calculating directly and explicitly all of the components 
of the subsurface stress field once the surface contact stress distributions are known [2]. These 
explicit results are expressed in terms of the Muskhelishvili potential, which as indicated above, are 
easily calculated with the method proposed. 

With the aid of these procedures, two previously unsolved problems, and relevant from the 
engineering point of view, were solved: 

 
- The interior half-plane stress field generated in Carter’s solution for an elastic rolling 

contact [2], [3]. 
 

 
Figure 1: Surface shear stress generated in a rolling contact. 

 



  

- The sub-surface half-plane stress field resulting from the contact between a half-plane 
and a flat rounded punch [4]. 

 

 
Figure 2: Contact pair between a flat rounded punch and a half-plane. 
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The experimental data obtained due to mechanical contact at instrumented indentation and sliding 

tests of functional surfaces of nanostructured coatings, quasicrystalline coatings and advanced 

composites are presented and analyzed.  

 

Advanced thin solid films, multi-layered and graded materials are presently in the forefront of 

materials research and have a broad range of application because have possess the functionally 

modified surface, so called “functional surface”. Their near surface layer differs at nanometer scale 

from the rest part of bulk material in the properties due to proximity of interfaces and changes of 

chemical composition, type of structure, specific defects, etc. 

The aim of this talk is to demonstrate that the judicious choice of a method of measurements 

and testing conditions is a key to reveal intrinsic properties of the object of study and also to 

discuss the received original experimental results. Some results obtained using modern methods for 

determining the hardness, Young’s modulus, adhesive/cohesive strength, friction coefficient, and 

wear resistance are shown below; they also published elsewhere [1-3].  

As it is shown at Fg.1 indentation behavior of a number of advanced surfaces differs from the 

common ones, as their elastic recovery at unloading is higher by a factor of 2–3 as compared to 

common metallic alloys. It is true for both thin coatings and solid substrates [2].  

 

 

Fine position control (250 nm and less), extremely low loads (0.5 mN and less) of modern 

testers gives a chance to penetrate solids with very delicate imprints (within 1 μm in lateral size) 

and characterize separately structure elements by instrumented indentation (ISO 14577). Two 

examples of imprints are presented at Fig.2: AFM image of polished cross-section amorphous 

 

 

Elastic Recovery R=(hm-hf)/hm,  

hm – maximum penetration depth,  

hf – residual (final) penetration depth 

Figure 1: Curves of nanoindentation and calculated mechanical properties 



  

metallic microwire covered by glass shell [3] and optical image of polished Al-based sintered 

composite added by Al-Cu-Fe quasicrystals [2]. The former nanoindentation study was done to 

estimate internal stresses at microwires using separate nanoindentation data on Young moduli for 

metallic core and glass shell. The latter nanoindentation was performed to explain an increase of 

wear resistance of Al-based sintered composite added by Al-Cu-Fe quasicrystals as shown Fig. 3. 
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Figure 2: Imprints on glass covered amorphous microwire (left) and Al based sintered samples 

added with quasicrystalline Al-Cu-Fe particles (right): inpint 2, H=1,6 GPa, E=74 GPa, 

R=11,9 %; imprint 8, H=4,8 GPa, E=92 GPa, R=27,4 %.  

   

Figure 3: Wear track profiles of Al based sintered samples added with quasicrystalline particles 

5 μm  
----- 
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The Stokes flow of a fluid in a channel bounded by two parallel solid walls is studied. The surface 

of a solid wall being assumed to be smooth, the classic perfect adherence condition is adopted for 

the corresponding homogeneous fluid-solid interface. The surface of the other wall being taken to 

be rough and capable of trapping small pockets of air, the corresponding liquid-solid interface is 

heterogeneous. This work aims to homogenize the heterogeneous liquid-solid interface so as to 

replace it by an imperfect homogeneous fluid-solid interface characterized by an effective slip 

length. A semi-analytical approach is developed for determining such an effective slip length when 

the rough surface is periodic but the distance between the two solid walls is arbitrary. The results 

obtained by the semi-analytical approach are compared with the relevant results delivered by the 

finite element method in a number of representative situations. 
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Observing a fluid flow along a solid impermeable wall, one can notice in some applications a
variable tangential velocity of the fluid that may depend on a material quality or a shape of the wall.
Such behaviour of the fluid is usually simulated by a slip type boundary condition (modelling the
blood flow, metal forming processes, the polymer flow, or the hydrodynamics problems; see [1, 2]
and references therein. Conditions of this type are used also in contact problems of solid mechanics,
where they describe friction on common interfaces [3].

This contribution deals with the Stokes flow and threshold slip boundary conditions. A finite
element approximation of the problem leads to the minimization of a non-differentiable energy
functional J subject to two linear equality constraints: the impermeability condition on the slip
part of the boundary and the incompressibility of the fluid. These conditions together with the
non-differentiability of J will be released by Lagrange multipliers. Eliminating the velocity com-
ponent, one gets the smooth dual functional in terms of three Lagrange multipliers (pressure in the
domain,and shear and normal stress on the slip part).The solution to the dual problem is computed
by an active set strategy [4] or by a path-following variant of the interior-point method [5]. The
computational efficiency of the algorithms has been presented in [6].

Selected numerical experiments describing behaviour of fluids in contact with solid hydrophilic
or hydrophobic surfaces [7] will be presented. Hydrophilicity is characterized by a capillary eleva-
tion in which liquid molecules are attracted to the surface so that the liquid adheres to the surface.
The opposite case is a capillary depression when molecules are repelled from the surface that leads
to hydrophobicity. In this case the liquid does not wet the surface and the slip depends on the shear
stress. It is known from experiments that hydrophobic surfaces are also aerophilic, i.e. the ability
to bind the air molecules to the surface. Therefore, for a certain kind of fluids, a thin layer of gas
is formed between the fluid and the surface. The slip then occurs when a certain value of the shear
stress is achieved. Navier [8] has already assumed that flow velocity and shear stress on the surface
are related by

ut = −kσt ,

where k characterizes the effect of adhesion forces. This contribution deals with the threshold slip
boundary which can be considered as a limit case of the Navier condition. One of our objectives is
to analyze how the normal stress σN depends on k.
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We study the frictionless and non-adhesive contact between elastic and elasto-plastic solids with
randomly rough surfaces. Because of this roughness (inevitably present in most natural and engi-
neering surfaces), when these solids are brought in contact, the ¡real contact area¿ - islands on which
two solids touch each other - presents only a small portion of the nominal contact area. In the first
part, we study (1) how this real contact area evolves with increasing pressure applied on the solids
and (2) how this evolution and the morphology of contact can be linked with material and surface
properties. In this context, we will discuss some details of generation of synthetic fractal surfaces,
their characterization and the interplay of parameters: root mean squared height and slope, Nayak’s
parameter, Gaussianity, cutoff wavelengths and fractal dimension [6]. We will also briefly expose
the numerical methods, that we use to carry out simulations of a mechanical boundary value prob-
lem with contact constraints: a finite element method [5] and an FFT boundary element method [4].
The numerical results will be compared with analytical models: asperity based models [1, 2] and
Persson’s contact theory [3].

Figure 1: Near the percolation threshold, fluid flow through the free volume between rough surfaces
in contact. Different colors correspond either to the flux intensity of hydrostatic fluid pressure; black
zones are the contact regions



In the second part, we will present new results on simulation of transport phenomena weakly
coupled with mechanical contact resolution: First, we will consider (3) leakage and percolation of
a viscous fluid through the interface between rough surfaces (Fig. 1). Some generalization on the
leakage regimes and the percolation limit will be suggested.
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Rectangular seals constitute an alternative design to O-rings. Rectangular seals are employed in 
demanding applications such as aircraft actuators, e.g. ref. [1]. The seal edges are generally 
rounded, ref. [2]. As a consequence of the presence of filleted edges, the contact pressure exhibits 
Hertzian-type local bumps in its lateral zones; it remains almost flat in the central zone of the 
contact. The lateral bumps and the central flattish zone confer to the contact pressure distribution a 
camel-backed profile, see ref. [2], and ref. [3] for a similar axisymmetric problem. 

It is difficult to derive a rigorous, analytical expression of the contact pressure curve for the title 
problem. In fact, the analytical solution available for a rectangular punch with rounded edges 
indenting a half plane, e.g. ref. [4] and related bibliography, is exact only in the situation of a rigid 
punch indenting a deformable half plane, ref. [5], whereas in the title problem the punch (i.e., the 
seal) is flexible and the half plane (i.e., the counterface) is rigid.  

It has recently been shown in refs [5-7] that the unrealities of the above analytical solution may 
be corrected by combining the analytical solution with Fracture Mechanics (FM) results dealing 
with the stress singularities at the tip of a transverse crack in a strip of finite width. In this paper, an 
extension of formula (20) of ref. [5] is developed, that accounts for the combined effects of a) the 
presence of a filleted edge, and b) a finite seal width and height.  

 
1. Purposely developed FM solution 

 
The unrealities of the analytical solution of ref. [4] may be corrected by performing an 

asymptotic matching between two asymptotic solutions, namely a) the analytical pressure profile 
valid for a frictionless, plane, rounded indenter of semi-infinite width, and b) the corresponding 
pressure profile describing the sharp-edged equivalent of the problem under scrutiny.  

The sharp edged model should account for two main peculiarities of the seal deformation. First, 
it should account for the effect of the seal material protruding from the contact region. Secondly, it 
should account for two parts of the rectangular seal border remaining rectilinear under 
compression, namely a) the flat portion of the sealing profile, and b) the seal opposite side. These 
two properties may be mimicked by a purposely developed FM solution referring to a cracked strip 
of finite width, and by imposing that the strip exhibits two transverse symmetry axes, one axis 
passing through two collinear edge cracks, and a second axis parallel to the previous one and at a 
distance equal to the seal height. A suitable FM model is therefore an infinitely long strip of finite 
width under an imposed elongation, exhibiting an infinite array of equispaced, transverse, collinear 
edge cracks. The above FM problem has not been treated in the pertinent literature, see ref. [8], p. 
285 for a similar case. A FM solution has therefore been developed with the aid of FE.  

Three singularities are considered, namely a) the presence of lateral collinear cracks, whose 



  

length is a; b) the presence of a central ligament, which may become vanishingly small, and whose 
half extent is denoted by c; c) the distance 2h between two parallel, contiguous cracks. The width w 
of the cracked strip is therefore 2(a+c).  

To derive a formula expressing the classical FM parameter KI, following e.g. ref. [8], an 
equivalent length leq is introduced together with the three auxiliary variables α,β,γ : 
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where δ is the elongation and E’ is an equivalent elastic modulus, and the numerical coefficients of 
the bracketed polynomial have been calibrated with a Finite Element (FE) analysis.  
 

2. Asymptotic matching 
 

By performing an asymptotic matching, the following formula for the maximum contact 
pressure is obtained: 

3
2
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r

EπK
Cp I≅                  (2) 

where r is the radius of the seal rounded edges, and C is a numerical constant. Since it is too 
difficult to derive analytically the applicability range of the previous formula, an error analysis is 
under development versus FE forecasts, involving more than one thousand geometries; 
preliminary, promising results are presented, that indicate a maximum error of about 20 per cent. 
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Within this work, we develop a combined contact and fluid-structure interaction (FSI) framework
based on a monolithic coupling scheme. The aim is to achieve a smooth transition between FSI and
frictional dry contact. One of the major applications in biomechanics is the simulation of heart
valves in a beating heart. Another example is the simulation of tires on a wet road in the field of
automotive engineering.

For the contact discretization we use mortar finite element methods with finite deformations [1].
For FSI we employ a fixed-grid approach based on the extended finite element method (XFEM)

[2]. Any moving-grid approach, e.g. arbitrary Lagrangean-Eulerian (ALE), would encounter serious
problems in the case of approaching bodies, since fluid elements between contact interfaces would
be completely squeezed together. While problems due to excessive mesh distortion could still be
resolved by remeshing, the fluid domain eventually undergoes a topological change in the limit case
of contact, which can only be accurately captured by a fixed-grid approach.

Previous work on the topic of FSI with contact has been done using a simple combination of these
two methods, the mortar contact discretization and the XFEM FSI algorithm [3]. While many aspects
of the resulting coupled FSI and contact formulation were already captured very well, this approach
still leaves room for improvements. Three main challenges have been identified and solutions will
be presented in this contribution:

1. The geometrical and algorithmic handling of overlapping cut meshes in the contact case

2. The numerical stabilization of the interface and the fluid when gaps become very small

3. The use of an appropriate time integration scheme for the transition between FSI and contact

In the context of the XFEM, a cut library is the algorithmic basis for handling and exactly repre-
senting complex geometrical scenarios in cut finite elements. This cut library provides a geometrical
library for boolean operations on tetrahedral and hexahedral meshes as well as methods and data
structures to facilitate the numerical integration of cut finite elements and moving interfaces. As the
weak constraint enforcement by the mortar method allows for small local penetrations, the surfaces
of structural bodies in contact may encounter small local overlaps. A key component enabling our
XFEM FSI framework to treat the contact case correctly is to expand the cut library to handle over-
lapping structural surfaces (selfcut). The selfcut library replaces the surfaces of an arbitrary number
of structural bodies by one new consistent surface mesh. This new mesh constitutes a suitable geo-
metrical object for cutting the background fluid elements via our cut library.

To stabilize the interface and the fluid solution next to structural surfaces, face-oriented stabi-
lization (FOS) is commonly used, which results in additional ghost penalty (GP) terms [2]. In case
of nearly contacting bodies, the physical fluid domain will sooner or later reduce to less than one
fluid element across the height of the fluid gap. Using first-order finite elements in the fluid gap



results in a conflict between the weak enforcement of the no-slip boundary condition and the weak
enforcement of the conservation of mass. To overcome this problem, we employ second-order finite
elements for the fluid discretization. Moreover, we show that for higher-order finite elements it is
advisable to express the interface and the fluid stabilization with the projection based GP operators.

An challenging task in fixed-grid moving boundary simulations is the development of a reason-
able time integration scheme, since the geometry of the underlying fluid domain varies permanently
over time. This issue is further amplified in case of topological changes such as two interfaces get-
ting into contact or losing contact. Some approaches to tackle this problem are proposed in literature
(e.g. [4]) and discussed in this talk.

In summeray, the main result of our work is the first finite element framework, which resolves the
three major challenges of FSI simulations with contact. First, our approach enables an algorithmic
handling of contact in an FSI simulation. Second, it incorporates a meaningful and stable fluid
solution in small fluid gaps. And finally, it guarantees a smooth transition from FSI to frictional dry
contact and vice versa.

An example for a 3D fluid simulation with several contacting bodies is shown in Figure 1.

Figure 1: A grid of contacting structures in a fluid channel.
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1 Short Information about the Finite Element Cell Method

The motivation of the current work is to develop a set computational contact mechanics method

which will be effective for the Finite Element Cell Method.

The Finite Cell Method (FCM) provides a method for the computation of structures which can

be described as a mixture of high-order FEM and special integration technique. The method is

one of the novel computational methods and is highly developed in numerous works of Düster and

colleagues, see in [1]. Rough idea of FCM is illustrated in Fig. 1. Computationally the necessary area

Ω is represented as Ωe ⊇ Ω, whereas Ωe is represented by simple geometry (rectangular element

of high order). In the area Ωe the indicator function α is introduced: α(x) =

{

1, x ∈ Ω,

0, x ∈ Ωe \ Ω.
.

eΩ

eΩ+ =
Ω

Ω

= 0u

t

Figure 1: Extension of the physical area Ω to Ωe [2]

Numerically, FCM is realized as integration by sub-domains, or by cells.One of the problem of

FCM is also description of boundary conditions, see [2]. Advantages of FCM are represented in

each problem where to hard FEM mesh:

• CT scan of human bodies;

• Modeling of the roughness of the surface;

• Modeling of 3D printing;

• etc etc etc



2 Development of the efficient computational contact method

One of the open problem is description the contact. There is almost straightforward implica-

tion of the contact for the high order method, see in [3], [4]. These methods are went later into

iso-geometric method. However, the problem, namely for FCM is still remain open. The current

development is mostly shown in 2D, for which the classical case FEM contact is shown in [5].

For FCM method we are developing and testing on the Hertz problem the following algorithms:

• CSTAS contact element (Cell-Surface-To- Analytical-Surface) for contact with rigid bodies;

• DCTC contact element (Discrete-Cell- To-Cell) – based on representation of the integration

point as an discrete finite element for both deformable bodies;

• CSTCS contact element (Cell Surface to Cell Surface) – based on building the contact element

between nearest integration points. It is appeared most robust element for deformable bodies,

however with most complex matrix projections.

It is investigated optimal number of cells and integration points as well as the selection of the

class of approximation functions and spline smoothing. All examples are tested for convergence,

numerical error and special effects (smoothness). The most attractive example is the possibility to

describe the self contact within only ONE ELEMENT.
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Figure 2: Self-contact in one element. 24 cells and 6 order of Bernstein polynomial.

There many points to discuss here: only non-penetration, or correctness for the contact stresses.

All these depend on the selected method.
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A Framework for Quantification of Fretting fatigue 
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The strength of notched components is well known to be adequately described by Williams’ semi-

infinite wedge solution; the local spatial distribution of stresses is properly represented and the 

multiplier on the solution, the generalised stress intensity factor, controls the magnitude, and hence 

the strength, at any rate for brittle materials.  This has been shown by many people over a number 

of years.  It is first shown, here, that the same solutions can be applied to quantify the fretting fatigue 

strength of sharp-edged contacts.  Thus, provided that the coefficient of friction is sufficiently large 

for any slip zone present to be confined to a near-edge region, a wedge whose internal angle is the 

sum of the half-plane and the contact edge angle will adequately describe the state of stress at the 

edge of the contact, and hence the fatigue strength.   

 The next question is whether it is possible to devise a further asymptotic form applicable 

to incomplete contacts, and the answer is ‘yes’.  The local contact pressure here decays towards the 

contact edge in a square root bounded manner.  And, if the friction is sufficiently high, the shear 

traction will be square root singular, and this field may be excited by either the application of shear 

or remote tension.  In practice the singularity is relieved by the presence of a small slip zone, and 

the size of this is derived.  We then go on to analyse a wide range of data from the open literature 

relating to fretting fatigue strength of incomplete contacts and show how this may be very 

satisfactorily collapsed onto a single curve for any given material.  Size effects are also properly 

taken into account by this approach. 

These two forms of correlation – one for incomplete contacts and one for complete contacts, 

enable  the majority of fretting contact strengths to be measured in a simple laboratory experiment 

and then applied to a complicated prototype with confidence – precisely because the local fields are 

matched.  The question remains whether these ideas may be extended to other types of contact – in 

particular, receding contacts - and whether a practically useful form may be evolved for this case.  

This is discussed, as is the value of frictional shakedown calculations in establishing whether these 

problems exhibit, in the steady state, cyclic slip.  Many complete contacts would seem to become 

adhered (if not adhered from the outset) and so ultimately behave more like ‘notch’ problems.  
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In the present paper, we study the development of wear profile under conditions of gross slip 

and assumption of the Reye-Archard wear criterion. Simulations are carried out using the Method 
of Dimensionality Reduction (MDR) and a full FEM formulation. The calculation time of MDR 
model is several orders lower than that of FEM-based models and allows for much higher spatial 
resolution.  

In the most practical cases, for theoretical description of wear, the simplest wear equation is 
used stating that the wear volume is proportional to the dissipated energy and inversely 
proportional to the hardness 0σ  of the worn material (Reye, 1860, Khrushchov and Babichev, 
1960, Archard and Hirst, 1956). The local formulation of this criterion means that the linear 
change ( )f r∆  of the three-dimensional profile ( )f r  (where r  is the polar radius in the contact 
plane) is given by the equation 

 ( ) ( ) ( )( )0 3

0

( ) ( D )wear
x x

kf r r u u r∆ = τ ∆ − ∆
σ

,  

where 0( )
xu  is relative tangential displacement, ( )3( D )

xu r  is a part of relative tangential 

displacement due to elastic deformation of a medium, ( )rτ  is tangential stress and symbol ∆ 
means the increment of corresponding parameter during one step of spatial displacement. In this 
wear law, all the influencing parameters are “absorbed” in the empirical dimensionless wear 
coefficient weark .  

In the present paper we provide a solution with the so-called Method of Dimensionality 
Reduction, that recently has been applied for a simulation of fretting wear (Dimaki et al, 2014, Li 
et al, 2014, Popov, 2014, 2014a, 2014b) The results will then be compared with a full FEM 
simulation. In Figure 1a, the worn profiles (calculated both using the MDR (solid lines) and FE 
(dashed lines) are shown for different sliding length U  related to the reference length 0U  that is 

necessary to obtain a wear depth comparable with the initial indentation depth 0d , 
2

0 0 0
0

wear N

a dU
k F
πσ

=
µ

, 

where 0a  is the initial contacts radius. Pressure distribution is shown in Figure 2 (both MDR and 
FE simulations).  

Parameter studies have shown that the calculated profiles slightly change with the number of 



  

elements used, and the convergence is achieved at approximately 800N =  elements. At that 
number of elements, the simulation up to "almost complete wear" takes about 1 minute for number 
of elements 800N = , while for 500N =  the results remain quite precise and the calculation 
takes about 10 second. 

 

 
Figure 1: (a) Worn profiles and (b) Normal pressure distributions obtained in the presented 

MDR-based model and in three-dimensional FEM model. 
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Wear phenomena are of great importance for industrial applications due to their destructive im-
pact on machines and strongly loaded components. It is a process of material removal associated
with frictional contact, which results in finite shape changes due to the accumulation of wear. De-
spite the existence of various different types of wear effects like abrasive, adhesive, corrosive and
fretting wear, their problem kinetics are most commonly described by the phenomenological Ar-
chard’s law [1]. It relates the amount of worn volume with the contact normal force, sliding length
and a problem-specific wear coefficient.

In the past years, computational treatment of these phenomena was predominantly done by em-
ploying traditional node-to-segment contact formulations [2]. Nevertheless, mortar finite element
methods have become the commonly accepted state-of-the-art approach for computational contact
mechanics [3, 4] and are utilized as contact framework for this contribution. Here, Archard’s wear
law is reformulated to express the worn volume as interface displacements in negative normal direc-
tion and is weakly imposed following the segment-to-segment idea. The non-penetration and fric-
tional sliding constraints are formulated as nonlinear complementarity problem, now also including
consistent linearizations with respect to the additional nodal wear.

Constraint enforcement is realized via the Lagrange multiplier method employing so-called dual
shape functions [5], which allow for static condensation procedures for the discrete Lagrange mul-
tipliers. Dual shape functions are now also used as testing functions for the weak enforcement of
Archard’s wear law, which opens up the possibility of applying an additional condensation proce-
dure for the unknown nodal wear variables. This avoids any increase in the global system size of the
linearized system of equations to be solved in each Newton-Raphson iteration step, while the full
Lagrange multiplier information as well as the wear effects are included in the condensed system.

In addition, the underlying shape evolution problem is solved with the help of an Arbitrary
Lagrangian-Eulerian (ALE) formulation, which guarantees proper mesh quality for the worn con-
figuration. The shape evolution problem within the ALE step and the wear calculation within the
classical structural step including contact are solved iteratively until convergence is achieved (parti-
tioned solution scheme).

The developed algorithm is applicable to one-sided as well as two-sided wear for two- and three-
dimensional problems, see Figure 1. Furthermore, treatment of quasi-steady-state wear phenomena
and employing higher-order elements is possible and will be demonstrated in this contribution.



Result after 1 cycle Result after 2 cycles

Result after 3 cycles Result after 4 cycles

Figure 1: Visualized worn reference configuration with mesh displacements for oscillating beam
with two-sided wear. Wire frame represents initial configuration.
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A single state variable model for adhesive interfaces
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The object of this communication is a relatively simple and quite general framework for the
description of the response of an adhesive surface separating two rigid bodies. This framework,
proposed in [1] and originating from the “RCCM model” developed in [2] and [3], is based on the
definition of a small number of fundamental objects:

- general laws, typically, energy conservation and dissipation principle, that is, mechanical ver-
sions of the first two laws of thermodynamics,

- a state variable α,
- an elastic potential and a set of dissipation potentials, in terms of which the general laws take

specific forms,
- a set of constitutive assumptions.

These objects determine the evolution law for the state variable, and this law, in turn, determines
the response to any given deformation process. A peculiarity of the model is that a single state
variable keeps track of many dissipation sources, such as damage, viscosity, and friction. In the
assumed constitutive laws, the intensity of adhesion is supposed to decrease under the action of
prescribed tangential and normal relative displacements. This reduction is attributed to progressive
damage. The assumed contact law is unilateral of the Signorini type for the normal displacements,
and frictional of the Coulomb type for the tangential displacements.

The model’s description starts with the simple case of a purely normal adhesive damage shown
in Fig. 1a, where u denotes the normal relative displacement. The figure also shows that, for every
given process t 7→ ut, the current value of the state variable is

αt = max
τ∈[0,t]

uτ . (1)

The constitutive assumption consists in prescribing the shape of the response curve σ = f(u) at the
first loading, and in assuming a linear unloading path down to the origin, with reloading along the

Figure 1: Adhesion with damage under normal loading. Response to a process of loading-unloading,
represented in the force-displacement plane (a), and in the state space (b).



Figure 2: Adhesion with damage, viscosity, and friction. Response to a process t 7→ (ut, vt),
represented in the state space (u, v, α).

same path. The areas marked by Ψ and ∆ measure the elastic energy and the dissipation associated
with the current state (ut, αt). The energy conservation leads to the power equation P = Ψ̇ + ∆̇,
where P = σu̇ is the power supplied by the exterior. This equation has the explicit form

σu̇ =
f(α)

α
uu̇+

(f(α)

2α

)′
(u2 − α2) α̇ , (2)

with ()˙ = d/dt and () ′ = d/dα. The response to a process of loading-unloading starting from
the origin is shown in Figure 1a, while Figure 1b shows the same response represented in the state
space (u, α). When including the tangential displacements v and the dissipation due to viscosity and
friction, the power equation takes the form

σu̇+ τ v̇ =
fN (α)

α
uu̇+

fT (α)

α
vv̇

+
(fN (α)

2α

)′
(u2 − α2) α̇+

(fT (α)

2α

)′
(v2 − α2) α̇+

1

2
h(α) α̇2 + µ(α)σ−|v̇| ,

(3)

with fN and fT normal and tangential constitutive curves, and with h and µmaterial functions in the
dissipative potential for viscosity and friction, respectively. Figure 2 shows the response to a process
t 7→ (ut, vt) in the three-dimensional state space (u, v, α). It is clear that the model can be futher
extended by adding other dissipation sources, each one represented by a new dissipation potential,
and by including supplementary deformation parameters and state variables.
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Cracking in Silicon solar cells is an important factor for the electrical power-loss of 

photovoltaic modules. Simple geometrical criteria identifying the amount of inactive cell areas 

depending on the position of cracks with respect to the main electric conductors have been 

proposed in the literature to predict worst case scenarios [1].  

Here we present an experimental and numerical study based on the electroluminescence (EL) 

technique showing that crack propagation in monocrystalline Silicon cells embedded in 

photovoltaic (PV) modules is a much more complex phenomenon. In spite of the very brittle nature 

of Silicon, due to the action of the encapsulating polymer and residual thermo-elastic stresses, 

cracked regions can recover the electric conductivity during mechanical unloading due to crack 

closure [2]. During cyclic bending, fatigue degradation is also reported. This pinpoints the 

importance of reducing cyclic stresses caused by vibrations due to transportation and use, in order 

to limit the effect of cracking in Silicon cells. An electric model with a localized electric resistance 

dependent on the crack opening is finally proposed to predict the electric response of electric 

conductors deposited on Silicon and intersected by a crack, see some results in Fig. 1 for two 

different mid-span deflection of a PV module tested in bending. 

 

   
         (a) 6 cm mid-span deflection    (b) 15 cm mid-span deflection 

 

Figure 1: Electric current perpendicular to the solar cell along a conductor intersected by a 

crack, for different deflections of the photovoltaic module tested in bending.  
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The contact problem of beams, rods, ribs and plates bonded to a half-plane has been widely 

investigated by many Authors. In particular, the problem of prismatic beams resting on a finite or 

semi-infinite elastic substrate deserves great interest because its practical applications in many 

engineering application. As an example, Shield and Kim (1992) investigated the problem of an 

Eulero-Bernoulli beam resting on an elastic half-plane under symmetric loading conditions, 

founding the interfacial stresses as well as the SIFs at the edges of the beam. The Authors also 

studied the effect induced by an elastic-perfectly plastic cohesive interface. Nonetheless, a 

complete analytical study of the contact problem of a Timoshenko beam bonded to a half-plane 

cannot be found in literature. 

The present study concerns the contact problem of a Timoshenko beam resting on an elastic half-

plane under general edge loading. Let N0, T0, M0 external horizontal and vertical forces and 

bending moment, respectively, acting at the edge of a Timoshenko beam. Reference is made to a 

Cartesian coordinate system centered at the middle of the beam, as depicted in Figure 1. In absence 

of further external load distributions acting on the system, the equilibrium equations of the beam 

read: 

     N  +   = 0;           T  + q = 0;           M   T  +  
2

h
  = 0;                   (1) 

being N, T and M the axial force, shear force and bending moment, respectively,  and q denote 

the interfacial shear and peeling tractions, respectively, h represent the thickness of the beam and 

prime denotes differentiation with respect to coordinate x. 

 



  

Figure 1. Free-body diagram of a beam bonded to a half-plane subjected to edge loads. 

 

The constitutive laws (the slope of the beam cross section  is positive if counterclockwise) 

give the following relationships: 

b

M

E I
 = ;           u  = 

b

N

E A
+ '  

2

h
  ;          v  = 

b eq

T

G A
 ;                          (2) 

where Eb denote the Young modulus of the beam, A and I are the area and the moment of inertia of 

the beam cross section respectively, Gb represents the shear modulo of the beam and Aeq is the 

shear area of the beam. The equilibrium conditions read: 

N(x) = N0 + ( )
a

x
s ds  ;         T(x) = T0 + ( )

a

x
q s ds ;                         (3) 

M(x) = M0 + T0 (a  x)  + 
2

h
( )

a

x
s ds    ( )( )

a

x
q s x s ds . 

By replacing eqs (3) in expressions (2), the horizontal and vertical components ub(x), vb(x) of the 

beam strain field are found. The normal strains of the surface (i.e. for y = 0) an anisotropic half 

plane under 2D strain read (Johnson, 1985) for  |x|  a are known from the Green fundamental 

solution: 

us (x) = 

2

s s s

s

2(1 ) (1 )(1 2 )
 d )

 a

a
s

q x
E  x E

   
  

  ;                   

vs (x) = 

2

s s s

s

2(1 ) (1 )(1 2 )
 d )

 a

a
s

q
x

E  x E

   
  

   .                         (4) 

The interfacial stresses within the contact region |x|  a are suitably expressed as follows: 

(x) = (s,s)( ) ( ) ( / )s s

s n n

n

E a x a x C  P x a   ,     yy(x) = (s,s)( ) ( ) ( / )s s

s n n

n

E a x a x D  P x a   .          (5)  

The problem is solved by imposing the compatibility condition  ub(x) = us (x) and vb(x) = vs (x)    

among the strain components of the beam and those of the half-plane in N+1 collocation points xk = 

cos[k/(2(N+1))], beng  k = 1, 2, ….. , N + 1. Thus, the system of 2 integral equations leads to an 

algebraic system of 2N+1 equations in the N+1 unknowns coefficients Ci (i = 1, 3, 5, …., 2N +1), 

and N coefficients Dj (j = 2, 4, …., 2 N) of the interfacial stresses (5). Once that the stresses (5) are 

known, the internal forces (3) and the displacement field of the system at the interface can be 

found. 
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The optimization of a large variety of rubber-made engineering components (e.g. tires, dampers, 
rubber seals) often is strongly influenced by phenomena taking place at the interface of rough 
surfaces, as sliding friction and adhesion. Usually the presence of friction force in adhesive sliding 
contacts leads to a reduction of the contact area, as the presence of tangential forces at the interface 
increases the amount of elastic (repulsive) energy stored at the interface. However very recent 
experimental investigation [1], have reported a completely different behavior, in that  sliding 
friction may unexpectedly causes an increase of the contact area. This result clearly contradicts 
preexisting investigations carried out by different authors in the case of non-interacting contacts 
[2].  

In order to shed light on this phenomenon, we employ a simplified model where both mutual 
elastic interactions as well as friction and adhesion effects can be easily addressed. 

In particular, in this work we focused on the problem of an elastic slab in sliding contact with a 
rigid wavy substrate in presence of adhesion and friction, see Fig. 1, where an elastic layer of 
thickness h is interposed between a flat rigid plate (upper part) and a sinusoidal rigid substrate with 
wavelength λ (bottom part). 

 

 
Figure 1: adhesive elastic sliding contact. 

 
The whole problem has been formalized by generalizing the Green’s function approach shown 

in [3] in the case of coexistence of normal and tangential loads. The elastic solution has then been 
obtained by numerically solving the coupled Fredholm equations of the first kind which govern the 
normal and tangential elastic fields. 

The presence of adhesive interactions between bodies causes parts of the contact area to 
experience negative contact pressure (i.e. tensile stress). In those zones we assumed no frictional 
interactions, following the model proposed by [4, 5]. This, in addition to the finite thickness of the 
slab, leads to a non-linear elastic interaction between normal and tangential problem which has 
required an iterative solution procedure for the elastic problem.  



The equilibrium solution is finally found  for any given penetration. We found that conditions may 
occur under which, because of friction and mutual interaction between asperities, the contact area 
can increase depending on the relative importance of friction and adhesion. 

These results are of utmost importance to explain the behavior of many different engineering 
components where friction and roughness play a dominant role, one example, among others, is the 
case of seals. 
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Contact mechanics between linear viscoelastic solids is a crucial research field that is being 

approached by means of analytical, numerical and experimental techniques (see, for example, [1]). 

The reasons of this huge interest are mainly due to the necessity of a fully optimized design for a 

countless number of engineering applications (e.g. tires, dampers, rubber seals), involving rubber 

and rubber-based composites. In all these cases, the in-depth knowledge of viscoelastic dissipative 

phenomena is required to understand how the material properties and the macro- and micro- 

geometry of the interacting surfaces influence the final efficiency and durability.  

For this purpose, a powerful tool has been developed to predict the behavior in terms of contact and 

friction for viscoelastic solids in steady-state sliding or rolling motions . This  Boundary Element 

Methodology, already presented in [2] and experimentally validated in [3] for the case of smooth 

contact, has been successfully employed also to study the contact between viscoelastic rough 

surfaces [4]. Unlike other numerical methods, the main peculiarity of this approach is the possibility 

of handling real viscoelastic materials with more than one relaxations time [2].     This allows to 

study real materials, which cannot be modeled with an ideal one-relaxation-time formulation. This 

issue is particularly important in the case of rough contacts, where the frequency spectrum of the 

viscoelastic excitation covers a range of 6 orders of magnitude or more.  

However, the main limitation of such an approach is related to the assumption of steady-state 

motion. Indeed, although in many cases, after a relatively fast transient state, experimental evidences 

show that the stationary solution provides accurate results, there are some situations where the time 

dependence has to be included. Under these conditions, for a linear viscoelastic material,  the 

problem can be formulated by means of the following equation, relating the displacement to the 

interfacial normal stress distribution: 

  

                                    𝑢(𝒙, 𝑡) = ∫ 𝑑𝜏
𝑡

−∞
∫𝑑2𝑥′ 𝐽1(𝑡 − 𝜏)𝐽2(𝒙 − 𝒙′)�̇�(𝒙′, 𝜏)                 (1) 

 

where 𝐽1(𝑡) =
1

𝐸0
− ∑ 𝐶𝑘exp(−𝑡/𝜏𝑘)

+∞
𝑘=0   and    𝐽2(𝑡) =

1−𝜈2

𝜋|𝒙|
 with 

𝐶𝑘 positive coefficients (referred to as creep coefficients) and 𝜏𝑘the relaxation times. 

However, solving directly Eq. (1) is not straightforward. Indeed, this would require to manage a fine 

discretization both of the space domain and of the time one, thus resulting to be impossible when 

roughness is considered.  Different strategies have to be considered.  

In particular, we can focus our attention on the case of a rigid punch in periodic contact over a 

viscoelastic halfspace. In detail, we consider a punch moving according to the sinusoidal relation 

x(t)=x0 sin(wt) . For this particular case, it is possible to show that, because of the intrinsic 

periodicity of the problem and, consequently, of the solution, the following formulation 
parametrically dependent on the time can be obtained:  
 



  

                                     𝑢(𝒙, 𝑡) = ∫𝑑2𝑥′ 𝐺(𝒙 − 𝒙′, 𝑡)𝜎(𝒙′, 𝜏)                                            (2) 

 

Where 𝐺(𝒙, 𝑡) is the viscoelastic periodic Green’s function. It is interesting to observe that in Eq. 

(2) the time domain is not explicitly present and this enables us to solve the problem by using the 

same techniques employed for the elastic and the stationary viscoelastic cases.  

By means of this approach, we have studied the contact of rigid sphere in reciprocating contact over 

a viscoelastic halfspace. Figure 1 shows the pressure distribution for the fixed time t=𝜋. 

 

 

Figure 1: Contour plot of the pressure distribution for a sphere in rolling contact with a viscoelastic 

halfspace . The motion law is x(t)=x0 sin(t)  with x0=10-2 m; the time is t=𝜋 and the indentation is  

d=4 10-5 m. 

 

In conclusion, although steady-state formulations can result really effective when dealing with 

viscoelastic contact problems, in some cases – e.g. in all the components where a reciprocating 

motion is present, like the vibration dampers- alternative procedures have to be considered to 

account for the role played by the time.  
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The frictionless rolling contact problem between a rigid sphere and a viscoelastic (VE) half-space
containing one elastic inhomogeneity is solved. The problem is equivalent to the frictionless sliding
of a spherical tip over a viscoelastic body. The inhomogeneity may be of spherical or ellipsoidal
shape, the later being of any orientation relatively to the contact surface. The model presented
here is three dimensional and based on semi-analytical methods. In order to take into account the
viscoelastic aspect of the problem, contact equations are discretized in the spatial and temporal
dimensions. The frictionless rolling of the sphere, assumed rigid here for sake of simplicity, is taken
into account by translating the subsurface viscoelastic fields related to the contact problem. The
Eshelby’s formalism is applied at each step of the temporal discretization to account for the effect of
the inhomogeneity on the contact pressure distribution, subsurface stresses, rolling friction and the
resulting torque. A conjugate Gradient Method and the Fast Fourier Transforms are used to reduce
the computation cost. Transient and steady-state solutions are obtained. Numerical results about
the contact pressure distribution, the deformed surface geometry, the apparent friction coefficient as
well as subsurface stresses will be presented, with or without heterogeneous inclusion.

An example of results is given in Fig. 1. The von Mises stress is plotted for a spherical inho-
mogeneity of dimensionless radius r = 0.15a∗ located at depth dxI3 = 0.3a∗ within a viscoelastic
half-space when a rigid sphere is rolling or sliding over the half-space. a∗ is the initial contact radius
for an homogeneous elastic half-space. Note that here the inhomogeneity is initially softer (rela-
tively) than the viscoelastic matrix (EI = 0.4E∞) and then becomes progressively harder than the
matrix at very low strain rate (EI = 4E0). Results are presented at different time steps when the
inhomogeneity is moving through the contact. The von Mises stress is plotted in the fixed coordinate
system R0(O0, X0

1 , X
0
2 , X

0
3 ). At the initial time t = 0 the maximum value of the von Mises stress

is maximum at the equator of the spherical inhomogeneity/matrix interface, reaching 0.8P0, signif-
icantly higher than the homogeneous solution (0.6P0). It remains maximum in the vicinity of the
inhomogeneity as far as this heterogeneity remains within the contact, however the absolute value
drops quickly to 0.14P0 for t = τ/2 while moving to the bottom side of the inhomogeneity/matrix
interface. When the inhomogeneity moves away from the contact (t = 2τ ) the maximum of the von
Mises stress corresponds to 0.1a∗ located at x1/a∗ = 1 in the viscoelastic matrix. This observation
is consistent since the peak of pressure for an homogeneous viscoelastic body is located at the same
position.
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(a)

(b)

(c)

(d)

(e)

Figure 1: Von Mises stress field at different time steps when the viscoelastic half-space contains a
spherical inhomogeneity of radius r = 0.15a∗ located at depth dxI3 = 0.3a∗ (γ = 0.4); prescribed
normal penetration δ = 0.1mm and dimensionless speed vτ/a0 = 0.6; (a) t = 0, (b) t = τ/2, (c)
t = τ , (d) t = 3τ/2, (e) t = 2τ .
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Numerical simulations of the contact between two rough surfaces are of great importance for
understanding many mechanical and physical phenomena in solids. Such simulations are still a
challenging task even in frictionless cases because the reel contact area is unknown in general and the
accurate determination of this area requires very fine mesh [1]. When a great number of asperities
are involved, the numerical simulation becomes excessively time consuming if the finite element
method is used. This work presents the development of efficient approaches for simulating the
contact between the frictionless rough surfaces of two elastic and viscoelastic solids by using a
boundary element method. Periodically and randomly rough surfaces are considered.
In the case of periodically rough surfaces, the contact problem can be solved for a unit cell by using
the periodical conditions [2]. With respect to finite element method, the number of elements is
then drastically reduced and the calculation is accurate and fast. The method has been validated by
comparing the numerical results with the available analytic solutions for one dimensional sinusoidal
surfaces under both full and partial contact situations. For two dimensional wavy surfaces, the
validation has been made firstly in the full contact situation where the analytic solutions are available.
In the case of partial contact, comparisons have been made with some incomplete analytic solutions
and other numerical solutions. Fig. 1 shows an example of the distribution of contact pressure.

Fig. A Fig. B Fig. C 
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Figure 1: distribution of contact pressure between sinusoidal surfaces.



Figure 2: distribution of contact pressure between randomly rough surfaces.

For the contact between randomly rough surfaces, a multi asperity approach has been developed and
successfully applied to the contact between a tire and a road surface [3, 4]. The method solves the
contact problem in two steps. At the first step, the contact force at the summit of each asperity is
calculated. The distribution of the contact pressure is calculated at the second step and the accuracy
is improved by using an iterative method. Fig. 2 shows an example of distribution of the contact
pressure. The method can be extended to the viscoelastic situation if the whole contact history is
known. At each instant, the contribution of the anterior force to the current situation is represented
by a time integral and the viscoelastic contact problem is then transformed into an elastic-like one.
The method can also be extended to situations when adhesion forces or fluids are present between
rough surfaces.
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   Imperfect elasticity of contacting bodies, their surface properties such as surface energy and 

surface roughness, play an important role in contact interaction and in relative sliding resistance. 

Normal contact of viscoelastic solids with adhesion, described by extended JKR theory, was 

studied in [1]. The combined effect of viscoelasticity and molecular adhesion in 2-D sliding 

contact of single and periodic systems of asperities and a viscoelastic base was analyzed in [2,3] 

under the assumption that characteristics of the surface adhesion are constants. However, it was 

experimentally shown in [4] that these characteristics change their values during the contact 

interaction. To study this effect, the 3-D contact problem for a spherical indenter sliding over the 

viscoelastic foundation with adhesion described by the various parameters in front and behind the 

contact region is considered below.  

     
(a)      (b) 

 

Figure 1: Scheme of the contact (a) and the dependence of the friction coefficient   on the 

dimensionless load P  for various values of adhesive pressure: 1 2 0 (1),p p   

4

1 2 0.68 10 (2)p p Pa   , 
4 4

1 21.35 10 , 0.68 10 (3)p Pa p Pa      

 

   A spherical rigid indenter slides over a viscoelastic layer of thickness H with a constant velocity 

V in the direction of the x-axis (Fig.1a). The mechanical properties of the viscoelastic layer are 

described by the linear 1-D model:  
2(1 )w H p

w T p T
t E t

 

   
   

  
      (1) 

Here p  and w  are the pressure and displacement on the boundary of the viscoelastic foundation, 

E  is the Young modulus,   is Poisson’s ratio, T  and T  are the retardation and relaxation times, 



  

respectively. 

   To take into account the adhesive (molecular) attraction between the surfaces, introduce the 

negative adhesive stress ( )ap p    acting on the boundary of the viscoelastic foundation (  is 

the value of a gap between the surfaces). The Maugis-Dugdale model is used in which the 

dependence of the adhesive stress on the gap between the surfaces has a form of one-step function 

[5]:  

0 0

0

0
( )

0
a

p
p

 


 







  


 
        (2) 

Here 0  is the maximum value of the gap for which the adhesive attraction acts. The surface 

energy   is specified by the relation: 

0 0
0

( )ap d p   


          (3) 

It is assumed that the 0 2p p   in front of the contact (region 2  in Fig.1a) if the gap does 

not exceed the value 2  and 0 1p p    behind of the contact (region 1  in Fig.1a) if the gap 

does not exceed the value 1 . 

The strip method is used to solve the problem. Analytical relations for the contact pressure and 

displacements of the viscoelastic foundation were obtained. A numerical algorithm was developed 

to determine the shape of the contact region and adhesive zones. 

Based on the calculation results, the dependences of the contact characteristics and the friction 

coefficient on a sliding velocity, mechanical characteristics of the viscoelastic body, and the 

characteristics of the surface adhesion are analyzed. In particular, it follows from the study that 

increasing of the surface energy behind of the indenter due to contact interaction leads to the 

increase of the contact and adhesive regions, and to the increase of the friction force (Fig.1b).  

The results are used to estimate the effect of adhesion in sliding contact of rough bodies, and to 

evaluate the influence of surface adhesion characteristics on mechanical component of friction 

force. 
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Computational contact analysis between multifield materials (e.i. piezoelectric materials) are in-

creasingly being considered due to the growing use of these materials in many different high tech-

nological applications such as actuators, sensors, piezo MEMS or engineering control equipments

among others. Engineers needs numerical tools to simulate the surface damage, micro-cracks or

stress concentrations due to the contact mechanics in the presence of electric fields.

Different numerical finite element schemes have been proposed to simulate contact and indenta-

tion elasto-piezoelectricicity under contact conditions. Quasistatic solid-fundation frictionless con-

tact problems for electro-elastic and electro-visco-elastic materials were studied in [1, 2], and in

[3, 4], including frictional contact conditions. Dynamic piezoelectric contact were considered in

[5, 6, 7]. More recently [8] studied the quasistatic solid-fundation frictionless contact problems for

electro-elastic materials, based on the assumption that the foundation is electrically conductive.

The Boundary Element Method (BEM) has never been used for modeling 3D frictional contact

between fully anisotropic piezoelectric bodies in the presence of electric fields. The BEM is a very

suitable numerical tool for interface interaction problems of multifield materials due to the number

of degrees of freedom per node increases. The BEM considers only the boundary degrees of freedom

involved in the problem and allows to obtain a very good accuracy with a low number of elements.

Based in an explicit boundary element scheme presented in [9], the aim of this work is to provide

a BEM formulation to simulate 3D frictional contact problems between piezoelectric solids. The

boundary elements technique computes the electro-elastic influence coefficients, and the projection

contact operators acting over the augmented Lagrangian guarantee the piezolectric contact restric-

tions fulfilment [10, 11]. The proposed formulation is applied to solve some benchmark examples

(e.g. piezoelectric halfspace spherical indentation in Fig.1), and similar and dissimilar quasistatic

contact problems between two piezoelectric solids.
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A two-level contact problem is proposed to study the effect of roughness of elastic coatings. 
The solution is based on using a function of additional displacements in a macro-level contact 
problem formulation. The dependence of additional displacements on nominal pressure is obtained 
from consideration of a periodic model of roughness. Analytical-numerical method, which is based 
oh Hankel integral transforms, boundary elements, and iteration procedure, is used to find macro-
contact characteristics. The results are used for identification of elastic properties of relatively hard 
rough coatings from elastic indentation data.   

 
Study of roughness is important for a contact of coated bodies especially for hard coatings with 

high resistance to plastic deformation. If the contact region is essentially larger than an average 
distance between asperities homogenization methods can be used to describe the roughness 
compliance for macro-contact problem. The modeling of roughness by one- and multi-level 
periodic system of asperities have been made by Goryacheva [1] to take into account the influence 
of asperities on macro characteristics of the contact with homogeneous half-space. Contact 
problem for two-layered elastic half-space and rough indenter is considered in [2]. In this study a 
model is presented to study the influence of a coating roughness on macro-contact.   

A contact of an axisymmetrical smooth indenter and rough two-layered elastic half-space is 
under consideration (Fig.1). The surface roughness is described as a thin layer with thickness 
h<<H, where H is the coating thickness. Another condition is that l<<a,  where l and a are the 
distance between asperities and a radius of the contact region. The boundary conditions are: 

( , ) [ ( , )] [ ( , )],w x y C p x y A p x y= +                                                                          (1) 

where ( , )w x y – normal displacements, [ ( , )]C p x y – additional displacements caused by roughness, 

[ ( , )]A p x y  – displacements, which can be obtained from the contact problem solution for smooth 

two-layered half-space [3].  
 

 
 

Figure 1: scheme of two-level contact. 



  

 
For the case of h<<H the additional displacements can be obtained from the periodic contact 

problem solution for homogeneous half-space as an analytical function [1]. The function should be 
presented as piecewise linear and used for the contact problem solution by boundary elements and 
iterations [2].  

The influence of the asperities density on contact pressure and penetration is analyzed. It is 
obtained that for low density the influence is essential. Computation procedure is fast and can be 
used for calculation of large amount of contact problems, that’s why it is used for identification of 
elastic properties of hard coatings with rough surfaces. Fig.2,a presents an example of  roughness 
with similar highs of large asperities. The analysis of the surface geometry makes it possible to 
construct periodic system, which is used for the modeling. The Young modulus of the coating is 
5% larger if the indentation data is treated taking into account roughness.   

 

 
 

a b 
Figure 2: roughness of  a Ni-P coating (a); experimental and model curves for indentation of the 

Ni-P coating on steel substrate by steel  ball (b) 
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It is well known that thermo-elastic effects may have significant results upon the macroscopic 

response in the mechanics of contact. On the other hand, as the scales in the contact system reduce 

progressively (micro to nano–scales), the internal material lengths become important and their 

effect upon the macroscopic response cannot be ignored. The present work extends the classical 

contact solution for a rigid flat punch indenting a homogeneous elastic half–plane, where heat 

conduction is permitted [1], to the analogous case of an indented microstructured solid. The 

behavior of the indented material is modelled through the couple–stress theory elasticity, which 

introduces a characteristic material length, appropriately modified in order to incorporate the 

thermal effects [2]. The problem formulation is based on singular integral equations, resulted from 

a treatment of the mixed boundary value problems via integral transforms and generalized 

functions. 

 

 

 

 

 

 

 

 

 

 

 

(a) Separation  (b) Perfect contact  (c) Imperfect contact 

 

Figure 1: schematic representation of the plane problem. The rigid flat punch is pressed into the 

surface under the action of the force P. A temperature difference between the two bodies under 

contact induces a heat flux Q and the state of thermal stress is expected to alter the macroscopic 

contact characteristics, essentially modifying the contact area b from (b) Perfect contact to (a) 

Separation or (c) Imperfect contact. The macroscopic material response is governed by the 

micromechanical length introduced by the generalized continuum theory under consideration. 

 

The solution shows that the thermo–mechanical response is strongly affected by the characteristic 

material length. Indeed, the conditions for which the type of contact passes from perfect contact to 

separation or to imperfect contact [2, 3] and the pressure distribution below the indenter change at 

varying the characteristic length-scale. 
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The contact between solids, in particular with rough surfaces, is a phenomenon met in many
situations and applications. The thermoelastic behavior of the contacting bodies is responsible of
different phenomena such as wear, crack and chemical reactions. Moreover this problem is very dif-
ficult to analyze, so efficient and accurate numerical methods are developed. The present work deals
with the numerical analysis of the contact problem between a rigid wavy surface and a thermoelastic
half-space, considering the frictionless condition and the periodical condition.
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Figure 1 : pressure distribution on three asperities of a wavy surface containing N = 121 spherical asperities
for different values of the temperature.



Figure 2 : the dependence of the relative contact area as a function of the temperature on a wavy surface
containing N = 121 spherical asperities.

The boundary element method is very efficient for analysing problem because only the nominal
contact area is meshed [1, 2, 3]. Besides, the periodical condition allows to reduce the number of
unknowns implied in the numerical calculation. In order to validate the numerical method, the cal-
culated contact area, pressure distribution and heat flow are compared to analytical solutions and
results from numerical reference method [1, 5]. The numerical convergence of the difference be-
tween analytical solutions and numerical results is observed. The new method is efficient and very
fast. Figure 1 and Figure 2 represent respectively the pressure distribution on a wavy thermoelastic
surface containing N = 121 spherical asperities for four different values of the temperature and the
evolution of the relative contact area with respect to the temperature. With the aim of highlight-
ing the influence of roughness, periodical surfaces with spherical, sinusoidal, conical or pyramidal
asperities are studied and results are compared to each other. This comparison shows that for peri-
odical surfaces, the geometry of asperities and temperature variation has a great influence on contact
areas, pressure distributions and heat flows. The present work can be extended to a large number of
phenomena, such as frictional contact, problems with adhesion forces.
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The scientific community is currently giving a lot of attention to the evolution of the true contact
area for two bodies under normal loading. In particular, Gaussian surfaces are particularly interesting
due to their relative simplicity and generality, which allows a statistical characterization. Because
the available theoretical models are approximate, numerical simulations have become an increas-
ingly attractive alternative to provide a link between statistics of contact surfaces and mechanical
properties. However, large surfaces with numerous asperities should be considered, which requires
computationally efficient algorithms and the usage of computer clusters.

The use of the well known Jonhson’s approximation allows to solve the problem using equivalent
deformable-flat on rigid-rough systems using boundary-element approaches (BEM). The computa-
tional gain of discretizing only surfaces leads to efficient calculations and permits extensive surface
refinement. Although the elasto-static normal contact has been widely explored, with many attempts
to connect to available theories, the prediction of the true contact area for a given pressure is still
debatable, especially at small loads.

At small pressures, the contacting area can be so small that the local concentrated stresses can
yield. This inevitably leads to plastic deformations, which have to be modeled. Several works
extended the boundary integral methods to account for elastic-perfectly plastic materials[1], where
the maximal yield stress constraint was imposed on the surface pressure distribution.

We use a comparable strategy, to investigate the influence of such a yealding constraint over the
contact problem during the normal loading employing a large set of representative rough surfaces[2].
The presented results focus on the true contact area and on the surface pressure distribution evolution.
Furthermore, we will also provide the sub-surface stress evolution during the loading process, by
using semi-analytical influence functions[3] derived with periodic boundary condition assumptions
from the Fourier space.
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This contribution revisits the fundamental equations for the solution of the frictionless unilat-
eral normal contact problem between a rough rigid surface and a linear elastic half-plane using the
boundary element method (BEM). After recasting the Linear Complementarity Problem (LCP) as a
convex quadratic programming (QP) problem with nonnegative constraints, different optimization
algorithms are compared for its solution: (i) the Greedy method with Conjugate Gradient (Greedy
CG), (ii) the Alternating Direction Method of Multipliers (ADMM), and (iii) the Non-Negative
Least Squares (NNLS) algorithm, possibly warm-started by accelerated gradient projection steps.
The latter method is at least two orders of magnitude faster than the Greedy CG method. Moreover,
due to the ability to include a warm start strategy, it is particularly useful when solving a sequence
of contact problems with an increasing or a decreasing far-field displacement. Finally, we propose
another type of warm start based on a refined criterion for the identification of the initial trial contact
domain that can be used in conjunction with all the previous optimization algorithms. This method,
called Cascade Multi-Resolution (CMR), takes advantage of physical considerations regarding the
scaling of the contact predictions by changing the surface resolution. The method is very efficient
and accurate when applied to real or numerically generated rough surfaces, provided that their power
spectral density function is of power-law type, as in case of self-similar fractal surfaces.
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1Université de Lyon, CNRS, INSA-Lyon, LaMCoS UMR5259, F-69621, France
E-mail: thibaut.chaise@insa-lyon.fr, daniel.nelias@insa-lyon.fr

2SKF Aerospace, Valence, France
E-mail: kwassi-vilevo.amuzuga@insa-lyon.fr

Keywords: Porosity, Indentation, inhomogeneity, Semi Analytical Method.

The recent development of the semi analytical methods has led to numerous improvements in
their capabilities. They allow now to perform fast and robust simulations of contact between semi-
infinite bodies with either plastic behaviour [1] or when containing inhomogeneities [4]. The latter
can be considered as inclusions without restriction about their nature or property. Thus, this has
led to direct applications in, respectively, hetero-elasticity, poroelasticity [2], thermoelasticity [3]
and elastic-plasticity when the inclusions get the nature of, respectively, material precipitations (car-
bides), voids (or defects), phase transformations of thermal origin and plastic strain (initial or not).

Figure 1: Contact pressure for a three dimensional distribution of porosities. P0 is the Hertzian
pressure and a the hertzian contact radius.

The present study investigates the effect of porosity volume fraction on the homogenized me-
chanical properties through performing an accurate indentation simulation on a porous body. The
porosity content is driven by inclusion size and their distribution along the three space directions.
Figure 1 shows the distribution of the contact pressure resulting from an indentation simulation on a
porous body. Note that the contact area and pressure distribution depend on the matrix and inclusions
material properties. In return, the material response is directly related to this pressure. Moreover, in
situations when the porosities are subjected to this pressure, the local yield stress condition around
them can be reached due to additional stress that they generated. Figure 2 shows the von Mises
total stress for a porous body compared to an homogeneous one. The stress concentration is well
visible as a function of porosities localization within the Hertzian stress field. Then plastic flow



may occur under this local stress state. Based on equivalent indentation curves, the homogenized
elastic and plastic properties can be determined thus showing the influence of the porosity content
and distribution.

(a) (b)

Figure 2: Von Mises stress distribution resulting for indentation of spherical rigid tip on a homoge-
neous (a) or porous (b) elastic semi infinite body.

References
[1] Chaise, Thibaut and Nelias, Daniel and Sadeghi, F,. ”On the effect of isotropic hardening on

the coefficient of restitution for single or repeated impacts using a semi-analytical method”,
Tribology Transactions, pp. 714-722 (2011).

[2] Giraud, A., Huynh, Q., Hoxha, D., and Kondo, D.,”Application of results on eshelby tensor
to the determination of effective poroelastic properties of anisotropic rocks-like composites”,
International Journal of Solids and Structures, pp. 3756 3772 (2007).

[3] Berryman, J. G.,”Generalization of eshelbys formula for a single ellipsoidal elastic inclusion to
poroelasticity and thermoelasticity ”. Physical review letters, 79(6), p. 1142.(1997).

[4] Leroux, J., Fulleringer, B., and Nelias, D., ”Contact analysis in presence of spherical inho-
mogeneities within a half-space”. International Journal of Solids and Structures, 47(22), pp.
30343049 (2010).



Micromechanical investigation of fracture of cold compacted powder

Erik Olsson1, Per-Lennart Larsson1
1Department of Solid Mechnics, Royal Institute of Technology, Stockholm, Sweden
E-mail: erolsson@kth.se, plla@kth.se

Keywords: Powder Compaction, Discrete element method, Contact Mechanics.

Compaction of powders followed by sintering is a popular production route of components of
hard materials, like cutting tools, and components of complex shape. First, a die, shaped as the
final product, is filled with powder material. The powder is pressed and the resulting compact, the
green body, is ejected. The green body has very weak mechanical properties but from sintering
the component gets its full strength but it also gets changes in its dimensions dependent on the
density distribution before sintering. It is also of importance that the green body is crack-free before
sintering due to the fact that green body cracks introduces weak zones and crack initiation points in
the final products. In this context, it is obvious that modeling of the compaction process is of great
importance for the product development.

In this work, an experimental and numerical investigation of the fracture of powder compacts
is presented with the aim of predicting cracks in the green body. The materials studied are two
types of spry dried cemented carbide granules used in the industry. In the experimental part, powder
compacts are pressed to different compact densities and later crushed in two different modes, axial
and radial crushing. These modes are pictured in Figure 1 (a). A microscopy study of the fracture
surfaces is performed which shows that both fracture of the individual powder granules and fracture
of inter-particle contacts is important in order to describe the fracture process. An example of the
fracture surface for the radially crushed compact is shown in Figure 1 (b).

Figure 1: (a) Sketch of the crushing test setups. (b) Fracture surface of a radially crushed compact
pressed to 45 % relative density

The whole experimental process, including compaction, unloading and compact crushing, is sim-
ulated using the Discrete Element Method (DEM) using an in-house developed code. The material
behavior of the granules was determined in Olsson and Larsson [1] and it will be used together with
the bonding models described in [2] to derive the relations between contact force and indentation



depth needed in DEM. Crushing of the individual particles is introduced by formulating a particle
fracture criterion using the forces acting on a particle. If the fracture criterion is fulfilled a fracture
plane is introduced in the particle using all the forces acting on that particle. The post-fracture be-
havior is determined by assigning different stiffness reductions to each contact force depending on
the angle between the contact force and the introduced fracture plane.

An example of the numerical results is shown in Figure 2 where axial crushing stress as function
of the displacement of the crushing plate is studied and compared with experiments. As seen in the
figure, the correct behavior of the crushing force is captured if fracture of the particles is included in
the numerical model. A simulation without fracture of the particles, is also performed which shows
a different behavior without the large drop in crushing stress at increasing displacement. Results for
radial crushing and the shape of the fracture surfaces will also be presented.

Figure 2: Comparison between the numerical simulations for the axial crushing load case.
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In recent years, much effort has been made on developing of impact testing methodologies for
soft biomedical materials and biological tissues [1]. It was shown [2] that linear viscoelastic impact
models are not capable of describing many sensitive features of observed impact phenomena for
soft tissues [1, 3]. One of the most striking examples is the dramatical decreasing behavior of
the coefficient of restitution as a function of the initial velocity of impactor documented in impact
experiments on articular cartilage [3], whereas the linear viscoelastic impact models assert that it
should be independent of the impact velocity. That is why, it was hypothesized [2, 3] that utilizing
non-linear viscoelastic models in the impact material identification problem may shed light on the
behavior of the output impact variables (in particular, coefficient of restitution) with variation of the
input impact parameters (impactor mass and velocity).

In this paper, we concentrate on the other hypothesis that the damage accumulation during the
impact of a biological tissue can be responsible of the observed peculiarities in the drop-weight
experiments, which show increasing amounts of damage in the articular cartilage samples [4]. Fol-
lowing [5, 6], we employ a phenomenological theory of damage and assume that the damage results
in the reduction of the elastic modulus. The damage evolution equation and the equation of motion
of the impactor (with variable coefficients) constitute a coupled impact problem. This problem is
analyzed for different damage evolution laws, and qualitative results for its solutions are formulated.
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A two-dimensional asymptotic model (both plane stress and plane strain) for the determination 

of the crack trajectory interacting with elliptical inclusion has been developed in the analytical form 

by Movchan and his co-workers (see [1], [5], [7], [3] and [4]). Their model assumes a semi infinite 

crack growing quasi statically in an infinite, brittle, isotropic and linear elastic body under pure 

Mode-I loading (KII=0) and interacting with isolated defects ‘far’ from the straight trajectory that 

would be followed by the crack in the absence of disturbances.   

 Systematic experiments and computational simulations were performed to investigate the 

validity of the above asymptotic model to predict crack trajectories in brittle materials containing 

isolated voids. The experiments were performed by the quasi-static loading of v-shaped notched 

plates of brittle material under Mode-I. We have also identified both large holes and the dynamic 

regime where fracture surfaces show kinking and roughness as the limitations of the considered 

models. 
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The description of roughness and of the morphology of natural and artificial surfaces has 

received a great attention by engineers and physicists due to its relevance in tribology, as well as 

for the investigation of adhesion forces and failure mechanisms taking place at interfaces [1-7].  

In the present study we present novel experimental methods for the multiscale characterization 

of complex surfaces with a texture or with a microstructure, using the facilities available in the 

laboratory of the research unit MUSAM on Multi-scale Analysis of Materials at the IMT Institute 

for Advanced Studies Lucca. 

As far as textured surfaces are concerned, we provide some insight into the possibility and 

limitations in applying random process theory and fractal modeling to describe the morphology of  

antireflective and hydrophobic rough surfaces. Usually the random process theory and fractal 

description are routinely applied to numerically generated surfaces. However, their applicability to 

real rough surfaces with texturing has not been scrutinized yet. Hence, we propose a morphological 

analysis of these real surfaces by using the confocal profilometer Leica DCM-3D to scan surfaces 

at different magnifications (see two images of a hydrophobic Ginkgo Biloba leaf in Fig. 1 at 10x 

and 100 x maginfications) and a Matlab software developed in house for their complete statistical 

and spectral characterization.  

 
Figure 1: Ginkgo Biloba leaf scanned at 20x and 100x magnification.  

 

We find that the distribution of asperity curvatures significantly deviates from the theoretically 

expected one, in spite of the fact that scale invariant properties of the PSD are almost preserved as 

in the numerically generated surfaces.  

For fibrillar interfaces, on the other hand, we focus our attention on the experimental action of 

crack bridging forces exerted by cellulose fibrils in mechanically bonded paper tissues. In order to 

quantify adhesion of these fibrillar interfaces, a peeling test is performed by adapting the Deben 

MTEST 5000S tensile stage placed inside the scanning electronic microscope Zeiss EVO MA15. 

The proposed experimental setup allows to acquire pictures at the micro-scale while performing 

mechanical tests and relate the global response to the action of bridging fibers at the microscale 



  

(see Fig. 2). From the SEM image analysis we can also evaluate morphological parameters such as 

the radial distribution of fibers, essential for the characterization of the peeling process. 

 

    
 

Figure 2: SEM images during peeling of paper sheets at 100x magnification.  
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The conrod big end bearing is one of the most critical components of internal combustion 

engines; it is usually subjected to high dynamic loads and high sliding velocities between 

contacting surfaces are often involved. Therefore, the tribological behaviour of the conrod big end 

bearing is often one of the key elements to engine reliability, and it has been investigated both 

theoretically and experimentally in several contributions in the pertinent literature [1]. 

With the ever-increasing quest to improve engine performance, and the consequent increase of 

the rotational speed and combustion/inertial loads, the cavitation of the lubricant used in conrod 

big end bearings may play a crucial role in the assessment of bearing durability. To overcome 

problems related to film cavitation, palliatives such as the reduction of the clearance between the 

components, the increase of the oil supply pressure and/or the use of harder coating materials have 

been commonly adopted. However, such simple adjustments do not always represent a valid 

solution; further investigations are required in order to avoid cavitation damage occurrence. 

The cavitation damage has been studied for more than a century both theoretically [2-5] and 

experimentally [6,7], and many attempts have been made to predict or measure the pressure spikes 

developing in the cavitated areas due to bubble collapse. Although a universally accepted theory 

seems not to exist, it is clear that the cavitation damage occurs due to the rapid and violent collapse 

of the vapour bubbles in the proximity of a solid boundary. 

The aim of the present work is the preliminary evaluation of the damaging effect of the 

cavitation in a conrod big end bearing via elasto-hydrodinamic numerical analyses.  In particular, 

the elasto-hydrodinamic problem is tackled using a formulation proposed by some of the authors 

[8,9] and based on the solution of the Reynolds equation suitably recast in terms of two 

complementarity variables, namely the hydrodynamic pressure, p,  and the void-fraction, r: 
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The geometric thickness hg considers the nominal profiles of the contacting surfaces while the 

compliance matrix C, employed to evaluate the elastic thickness he, is computed with a Finite 

Element model of the assembly. 

The correct prediction of the cavitation and the location of the boundaries between cavitated 

and active areas is guaranteed by the complementarity nature of the two chosen variables and the 

approach naturally ensures mass conservation and unconditional convergence. The EHL problem 

is numerically solved using a weak formulation of the Reynolds equation based on the Finite 

Element Method. 

The object of the study is the conrod big end bearing of a high performance motorbike engine. 

Comparative analyses involving different geometrical configurations of the crankpin/conrod 

assembly, and in particular of different shapes of the inner profile of the bearing, are presented. 

A preliminary cavitation damage index is proposed, based on the variation in time of the void 

fraction at a certain location. The results obtained show a strong influence of the geometry of the 

bearing on the cavitation phenomenon. Experimental evidence qualitatively agrees with the 

numerical forecasts, thus corroborating the use of both the methodology and the cavitation damage 

index proposed in this contribution. 

............................... 
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